SUB-BAND MODELING OF TRANSPORT IN NARROW GEOMETRIES

Christian Ringhofer (Arizona State University)
(ringhofer@asu.edu, http://math.la.asu.edu/~chris)
JOINT WORK WITH

N. BenAbdallah, P. Degond (Toulouse)
C. Heitzinger (Vienna)

Supported by NSF Grants: DMS0757309, DMS0718308 and DMS0604986
INTRODUCTION

- Charged particle transport in confined geometries
- Thin films and narrow tubes (channels).
- **Goal:** Models that allow for simulation on long time scales.
APPLICATIONS 1

Thin films:
Nano-scale logics and analog devices. SOI (Silicon on Insulator) technology. Solar cells.
Modulate the current through very small variations in the gate voltages.
Thin tubes: Proteins and Ion channels

Transport of charged molecules (ions) in water and in complicated geometries.

Protein 1LNQ
Hamiltonian dynamics + collisions with a background confined geometries.

Model hierarchy:
1. Molecular Dynamics. (compute the background).
2. Monte Carlo. (collisions with random background).
3. Kinetic equations for phase space densities.
4. Macroscopic models (Hydrodynamics, Diffusion etc.)

1-3: physical transport mechanisms.
4: function of the structure on large time scales.
KINETIC MODELS

\[\partial_t f + \{ \mathcal{E}, f \} = Q[f], \quad \mathcal{E}(X, P) = V(X) + \frac{|P|^2}{2} \]

\(f(X, P, t) \): phase space density (\(X \): space, \(P \): momentum)

\(\{ \mathcal{E}, f \} \): Hamilton operator (Poisson-bracket, ballistic transport)

Classical picture: Newton equations

\[
\begin{align*}
\frac{dX}{dt} &= P, \\
\frac{dP}{dt} &= -\nabla_X \mathcal{E}
\end{align*}
\]

\[
\{ \mathcal{E}, f \} = \nabla_X \cdot (\nabla_P \mathcal{E} f) - \nabla_P \cdot (\nabla_X \mathcal{E} f)
\]

Quantum picture via Wigner functions (Pseudodifferentialoperators):

\[
\{ \mathcal{E}, f \} = \frac{1}{2} \int_{-1}^{1} \nabla_X \cdot [\nabla_P \mathcal{E}(X, P + \frac{s\hbar}{2i} \nabla_X) f] - \nabla_P \cdot [\nabla_X \mathcal{E}(X - \frac{s\hbar}{2i} \nabla_P, P) f] \, ds
\]
Collisions

\[\partial_t f + \{ \mathcal{E}, f \} = Q[f] \]

Q: Dissipative collision operator (scattering with the background)

Boltzmann: Integral operator

\[Q[f](X, P) = \int S(f, P, P') f(X, P') - S(f, P', P) f(X, P) \, dP' \]

Fokker-Planck (Wiener process, random walk)

\[Q[f](X, P) = \nabla_P \cdot [\nabla_P f + \gamma P f] \]

Q relaxes against some notion of thermodynamic equilibrium \(\Rightarrow \) large time asymptotics.
OUTLINE

- Part 1: General principles
 - Confined geometries, anisotropic energy dissipation → fluid models with free energy variables.

- Part 2: Classical transport in narrow channels.

 - Conservation laws and local entropies.
CONFINED GEOMETRIES

\[X = (x, y) \in \Omega = \Omega_x \times \Omega_y \text{ with } |\Omega_y| \ll |\Omega_x| \]

\(x \): transport direction, \(y \): confinement direction.

\[P = (p, q) \]

- Thin films: \(x, p \in \mathbb{R}^2, y, q \in \mathbb{R}^1 \)
- Narrow channels: \(x, p \in \mathbb{R}^1, y, q \in \mathbb{R}^2 \)
\(y \ll x \rightarrow y = O(\varepsilon) \)

\(\varepsilon \): aspect ratio

Rescale:

\[
\begin{align*}
 y & \rightarrow \frac{y}{\varepsilon}, \\
 q & \rightarrow \frac{q}{\sqrt{\varepsilon}}, \\
 t & \rightarrow \frac{t}{\varepsilon}
\end{align*}
\]

Principle:

- A collision with the background in the confinement direction \(y \) is a rare event compared to collisions with the background in the transport direction \(x \).

- Energy dissipation happens mainly in the \(p \) variable, whereas \(\frac{|q|^2}{2} \) is asymptotically conserved.
THE COLLISION OPERATOR

\[Q[f](X, P) = \int S(f, P, P') f(X, P') - S(f, P', P) f(X, P) \, dP' \]

\[S(f, P, P') = s(f, P, P') \delta\left(\frac{|P|^2}{2} - \frac{|P'|^2}{2} \pm \omega\right), \quad \omega: \text{amount of energy exchanged with the bath during a collision.} \]

rescale:

\[S(f, P, P') = s \delta\left(\frac{|p|^2}{2} + \frac{|q|^2}{2\varepsilon} - \frac{|p'|^2}{2} + \frac{|q'|^2}{2\varepsilon} \pm \omega\right) \approx s \delta(q^2 - q'^2) \]

\(Q \) conserves asymptotically \(\frac{|q|^2}{2} \)

\[\int \frac{|q|^2}{2} Q[f](x, y, p, q) \, dpq = O(\varepsilon) \]
STRONG CONFINEMENT

Strong confinement potential

⇒ Forces acting on the particle in the confinement direction \(y \) much larger than in the transport direction \(x \).

\[
V(x, y) = V_0(x) + \frac{1}{\varepsilon} V_1(x, y), \quad \int V_1(x, y) \, dy = 0, \quad \forall x
\]

\(V_0(x) \): average potential (\(V(x, y) \) averaged in \(y \) for each \(x \)).

\[
\mathcal{E} \rightarrow \mathcal{E}_x + \frac{1}{\varepsilon} \mathcal{E}_y
\]

\[
\mathcal{E}_x(x, p) = V_0(x) + \frac{|p|^2}{2}, \quad \mathcal{E}_y(x, y, q) = V_1(x, y) + \frac{|q|^2}{2}
\]
Scaled Model Equations

\[\partial_t f + \{ \mathcal{E}_x, f \}_{xp} = \frac{1}{\varepsilon} C[f] = \frac{1}{\varepsilon} (\{ \mathcal{E}_y, f \}_{yq} + Q[f]) \]

\[\mathcal{E}_x(x, p) = V_0(x) + \frac{|p|^2}{2}, \quad \mathcal{E}_y(x, y, q) = V_1(x, y) + \frac{|q|^2}{2} \]

Conserved observables:

\[\int \psi(\mathcal{E}_y(x, y, q)) \{ \mathcal{E}_y, f \}_{yq} \, dq = 0, \quad \int \psi(|q|^2) Q[f] \, dq = 0 \]

\[\Rightarrow \int \psi(\mathcal{E}_y(x, y, q)) C[f] \, dq = 0, \quad \forall x \forall \psi \]

Large time behavior described by density function \(n(x, \mathcal{E}_y(x, y, t), t) \) with \(\mathcal{E}_y \) as a free variable.
Principles:

\[\partial_t f + \{ \mathcal{E}_x, f \}_x p = \frac{1}{\varepsilon} \mathcal{C}[f] \]

\(\mathcal{P} \): Projection onto the kernel - manifold \(\mathcal{K} \) of \(\mathcal{C} \). Conserves observables: \(\mathcal{P} \mathcal{C} = 0, \mathcal{C} \mathcal{P} = 0 \)

\(f = f_0 + \varepsilon f_1, \quad f_0 = \mathcal{P}[f], \quad \varepsilon f_1 = (id - \mathcal{P})[f] \)

(1) slow dynamics on kernel manifold, (2) fast dynamics on the orthogonal complement.

\[(1) \partial_t f_0 + \varepsilon \mathcal{P}[\{ \mathcal{E}_x, f_1 \}_x p] = 0 \]

\[(2) \varepsilon \partial_t f_1 + \{ \mathcal{E}_x, f_0 \}_x p + \varepsilon (id - \mathcal{P})[\{ \mathcal{E}_x, f_1 \}_x p] = D \mathcal{C}(f_0)[f_1] \]
Large time dynamics: The kernel

\[
\partial_t f_0 + \mathcal{P}\{\mathcal{E}_x, f_1\}_{xp} = 0, \quad f_1 = DC[f_0]^+\{\mathcal{E}_x, f_0\}_{xp}
\]

Projection:

\[
f_0 = \mathcal{P}[f](x, y, p, q) = \frac{n(x, \mathcal{E}_y(x, y, q), t)}{N(x, \mathcal{E}_y(x, y, q))} M(p)
\]

\(n(x, \eta, t) \): density averaged over equi-potential surfaces

\(\mathcal{E}_y(x, y, q) = \eta \).

\[
\int \delta(\mathcal{E}_y - \eta)(id - \mathcal{P})[f] \, dp dq = 0, \quad \forall x, \eta
\]

\(N \): Density of States (DOS) function, \(M(p) \): Maxwellian

\[
N(x, \eta) = \int \delta(\mathcal{E}_y(x, y, q) - \eta) \, dy q
\]
The Diffusion Equation

\[\partial_t f_0 + \mathcal{P}[\{\mathcal{E}_x, f_1\}_x] = 0, \quad f_1 = DC[f_0]^+ \{\mathcal{E}_x, f_0\}_x \]

Diffusion equation for macroscopic density \(n(x, \eta, t) \) on large time scales.

\[\partial_t n + \nabla_x \cdot F_x + \partial_\eta F_\eta = 0 \]

\[F_x = F_x(\nabla_x n, \partial_\eta n), \quad F_\eta = F_\eta(\nabla_x n, \partial_\eta n). \]

- General formalism.
- Practical problem: Computation of the pseudo-inverse \(DC[f_0]^+ \)
Part 1: General principles

- Confined geometries, anisotropic energy dissipation → fluid models with free energy variables.

Part 2: Classical transport in narrow channels.

- Conservation laws and local entropies.
Fluxes have to be computed from

$$(id - \mathcal{P})\{\mathcal{E}_x, f_0\}_{xp} = DC[f_0]f_1, \quad DC[f_0]f_1 = \{\mathcal{E}_y, f_1\}_{yq} + DQ[f_0]f_1$$

- No exact solution.
- Represents a $2 \cdot \text{dim}(y) - 1$ dimensional problem. Has to be solved for any gridpoint in (x, η)!
- Feasible for thin films ($\text{dim}(y) = 1$) but not for channels ($\text{dim}(y) = 2$).
Harmonic confinement potentials

Replace $V_1(x, y, q)$ by a quadratic

$$V_1(x, y) \rightarrow \frac{1}{2}(y - b(x))^T G(x)(y - b(x))$$

Choice of b and G:

For every gridpoint in the transport direction x, solve an L^2 minimization problem for the forces in the confinement direction y.

$$\int_{\Omega_y} |\nabla_y V_1(x, y) - G(x)(y - b(x))|^2 dy \rightarrow \min, \ \forall x$$
\[V_1(x, y) \rightarrow \frac{1}{2} (y - b(x))^T G(x) (y - b(x)) \]

- Equipotential surfaces become ellipsoids in \(\mathbb{R}^4 \).
- The function \(f_1 \) can be parameterized with 3 dimensional angle in \(\mathbb{R}^4 \).
- Inversion of \(DC \) reduces to a 1-D problem in the azimuth angle.
- Flux computation reduced to an effective 1-D problem \(\rightarrow \) Galerkin - Legendre in the azimuth angle.
A toy channel

- Generate random charges.
- Compute the exact Coulomb Potential $V(x, y)$ corresponding to these charges, and the local quadratic approximation.
Trajectories

Molecular dynamics trajectories \((x' = p, \ p' = -\nabla_x V)\) for the exact and approximate Coulomb potential and random initial conditions.
Inversion of the collision operator $DC[f_1]_{31}$

$$C[f_1] = \{E_y, f_1\}_{yq} + Q[f_1] = \{E_x, f_0\}_{xp}$$

Variable transformation:

$$(y, q) = \Omega(x, \eta, \theta_1, \theta_2, \theta_3) \text{ mit } E_y(x, \Omega(x, \eta, \theta)) = \eta$$

- C diagonal in θ_2, θ_3.
- Inversion of C: Legendre - Galerkin in θ_1.
The large time diffusion system

\[\partial_t n + \nabla_x \cdot F_x + \partial_\eta F_\eta = 0 \]

\[F_x = -N D_x \nabla_x \frac{n}{N} - N \mu_x (1 + \partial_\eta) \frac{n}{N}, \]

\[F_\eta = -N D_\eta (1 + \partial_\eta) \frac{n}{N} - N \mu_\eta \cdot \nabla_x \frac{n}{N}, \]

- \(N, D_x, D_\eta, \mu_x, \mu_\eta \) Functionals of \(G(x), b(x) \) (and of \(V \), computed numerically).

- Yields a parabolic system for \(n \).
Entropy and Parabolicity

Theorem: (CR, SIAP09)

\[\partial_t \int e^{V_0 n(x,\eta)} \frac{n(x,\eta)^2}{N(x,\eta)} \, dx \eta \leq 0 \]

\(\implies \) (implies)

\[\begin{pmatrix} D_x & \mu_x \\ D_\eta & \mu_\eta \end{pmatrix} \geq 0 \]
Numerical Results (Density n_{33})
Numerical Results (Fluxes F_x, F_η)

```
Source current js: -292.105
Drain current Id: -287.675
Jo-Js: -4.43733e-09

mp45m: subbandWire(Lx = 20, Ld = 10, dx = 0.25, dy = 0.25)
Options: dj = 1, dj = 1, Lx = 2, Ld = 2, silent = false, verbose = true, plot2Dplot = $\{1\}$
Arguments: Lx = 20, Ld = 10, dx = 0.25, dy = 0.25
max = 41
n1 = 41
```
Part 1: General principles

• Confined geometries, anisotropic energy dissipation → fluid models with free energy variables.

Part 2: Classical transport in narrow channels.

• Computational complexity. Locally harmonic potential approximation. Numerics.

• Conservation laws and local entropies.
Part 3: Thin Films

[Diagram of a transistor structure showing layers for source, gate, channel, drain, and contact areas.]

1
Goal: large time asymptotics for conserved quantities (energy tensor in confinement direction).

V_1: Step function potential, jump in the bandgap energy from semiconductor to oxide.

Much much smaller length scales. Classical transport description insufficient \rightarrow q.m. transport picture.

Q.m. collision mechanisms very complicated.
The Schrödinger equation:

\[
\begin{align*}
\dot{\rho} &= \left\{\mathcal{H}_x, \rho\right\} + \frac{1}{\varepsilon} C[\rho], \\
C[\rho] &= \left\{\mathcal{H}_y, \rho\right\} + Q[\rho]
\end{align*}
\]

\[
\begin{align*}
\mathcal{H}_x &= -\frac{\hbar_x^2}{2m} \Delta_x + V_0(x), \\
\mathcal{H}_y &= -\frac{\hbar_y^2}{2m} \Delta_y + \frac{1}{\varepsilon} V_1(x, y),
\end{align*}
\]

\(\rho(x, y, x', y')\) density matrix for the mixed state.

\(\hbar_x, \hbar_y\) scaled Planck constants (relative to the length and energy scales in \(x\) and \(y\)).

\[
\begin{align*}
\hbar_x &= O(\varepsilon), \\
\hbar_y &= O(1)
\end{align*}
\]

\(\hbar_x \to 0 \to\) classical diffusion system in \(x\) while retaining the q.m. transport in \(y\).
Sub-band modeling

\[\partial_t n_k + \nabla_x \cdot F_k = 0, \quad F_k = -\nabla_x n_k - n_k E_k \]

\[H_y \psi_k(x, y) = E_k(x) \psi_k(x, y) \]

► (Fischetti Phys. Rev. B, (1999),

► BenAbdallah, Mehats, Schmeiser, Vauchelet, Weisshäupl, SIAP (2005)).

► Additional effects: large confinement forces, thermodynamics.
Analogy to classical case: \mathcal{H}_y (energy in the confinement direction).

Components of the wave function in the eigenspaces of \mathcal{H}_y.

$\psi_k(x, y)$: eigenfunction and $E_k(x)$: eigenvalue

$$\mathcal{H}_y \psi_k(x, y) = E_k(x) \psi_k(x, y)$$

$$\int \psi_k(x, y) C[\rho](x, y, x, y') \psi_k(x, y') dy y' = 0, \forall x, k$$

$$\iff Tr(\Phi(x, \mathcal{H}_y) C[\rho]) = 0, \forall x, \forall \Phi : \mathbb{R}^2 \rightarrow \mathbb{R}$$

classical: $$\int \phi(x, p, \mathcal{E}_y) C[f] dxy pq = 0, \forall \phi$$
The Collision Operator

Q.M. collisions hard to describe on the level of the Schrödinger or Heisenberg equation. (NEGF, Lindblad...)

Relaxation - operator

\[C[\rho] = \frac{1}{\tau}(M[\rho] - \rho) \]

\(M[\rho] \): Local thermodynamic equilibrium. Maximizes the relative Von Neumann entropy under the constraint of given observables.

\[Tr[M \cdot (id + H - \ln(M))] \rightarrow \max, \ \forall M : Tr[\phi(H_y)(M - \rho)] = 0, \ \forall \phi \]

(QM - generalization of the Levermore closures)
Theorem:

\[
Tr[\mathcal{M} \cdot (id + \mathcal{H} - \ln(\mathcal{M}))] \to \max, \quad \forall \mathcal{M} : Tr[\phi(\mathcal{H}_y)(\mathcal{M} - \rho)] = 0, \quad \forall \phi
\]

Degond, CR (JMP03):

The optimization problem has a unique solution, given in terms of chemical potential operators.

\[
\mathcal{M}[\rho] = \exp[-\mathcal{H}_x + \phi_\rho(\mathcal{H}_y)], \quad \phi_\rho : Tr_y(\mathcal{M}[\rho]) = Tr_y(\rho)
\]
\[i\varepsilon \partial_t \rho = \{ \mathcal{H}_x, \rho \} + \frac{1}{\varepsilon} C[\rho], \quad C[\rho] = -\{ \mathcal{H}_y, \rho \} + \frac{i}{\tau} (\mathcal{M}[\rho] - \rho) \]

Instead of \(n(x, \eta) \) in the classical case, asymptotics yields a system for \(n_k, \quad k \in \mathbb{N} \), the components of the density belonging to eigenspace \(k \).

\[n_k(x) = \int \psi_k(x, y) \rho(x, y, x, y') \psi_k(x, y') \, dyy' = 0, \quad \forall x, k \]

\[\partial_t n_k + \nabla_x \cdot (F^x_k[n]) + F^\eta_k[n] = 0 \]
The Semiclassical Limit $h_x \to 0$, $h_y = O(1)$

The classical limit in the transport direction, leaving transport in the confinement direction fully q.m., gives the fluxes F^{x}_k and F^{η}_k.

\[
\partial_t n_k + \nabla_x \cdot F^{x}_k[n] + F^{\eta}_k[n] = 0, \quad F^{x}_k[n] = -\nabla_x n_k - n_k \nabla_x E_k \\
F^{\eta}_k[n] = -\sum_j |A_{kj}|^2 (n_j - n_k) \left(1 + \frac{E_j - E_k}{\ln(n_j) - \ln(n_k)}\right)
\]

$F^{\eta}_k = 0 \implies$ standard sub-band equations.

$F^{\eta}_k[n]$ models energy transfer between eigenspaces due to large forces in the confinement direction y.

\to inter-band collision operator, (A_{kj} dependent on eigenfunctions of \mathcal{H}_y)
Structure of the Inter-Band Collision Operator

\[F^\eta_k[n] = - \sum_j |A_{kj}|^2 (n_j - n_k) \left(1 + \frac{E_j - E_k}{\ln(n_j) - \ln(n_k)} \right) \]

Theorem: (CR, SIAP09)

- Kernel of \(F^\eta \) consists of elements of the form
 \[n_k(x) = c(x)e^{-E_k(x)} \].

- \(F^\eta \) dissipates the entropy functional
 \[G[n] = \sum_k n_k(\ln(n_k) + E_k - 1) \text{ locally in } x. \]
 \[\sum_k (\ln(n_k) + E_k) F^\eta_k[n] \geq 0, \forall x \]

- \(F^\eta \) relaxes the system against a local Maxwell-Boltzmann distribution
 \[n_k(x) = c(x)e^{-E_k}. \]
Example: Thin SOI - Devices
Sub-band densities using 3 sub-bands

Comparison of strong confinement to uncoupled case
Comparison of flux densities.
Conclusions

- General principle of anisotropic energy dissipation yields large time averaged models with energy as additional free variable.
- Incorporates relatively complex micro-geometries into macro models.
- Q1: Improvement over locally parabolic confinement potentials.
- Q2: Does q.m. transport picture add something to the behavior of channels?
Acknowledgments: NSF FRG www.cscamm.umd.edu/frg