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Critical Phase transitions

M is order parameter
Fluids: vapor-critical point

H=0 °

|
T T

H Is ordering field
Fluids: critical point of mixing

M = p— pc
H = p— pe
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Critical Power Laws and Universality
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c— T-T.

Te

¢ Is correlation length

x=(0M/OH )r: susceptibility

& =&V v = 0.629
x = loe v = 1.239
v~ 2U
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Simulations: binary L-J liquid
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all parameters have been made dimensionless with the aid
of the Lennard-Jones parameters

®, U

OAA = OBB = 0AB = O '
EAA = €EBB = 2€AB r

re = 2.00

o | -
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Simulation Procedure: Monte Carlo
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From atoms at random positions in a box of length

# Equilibration in the canonical ensemble N4, = N, V, T
via MC

# Continue equilibration in the semi-grand-canonical
ensemble via MC (SGMC)

— N4 + Np fixed, N4 fluctuates

e In a finite system at criticality, the slowest relaxation
time Tmaz XL~

for SGMC 2 ~2
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In SGMC 4 = N4/N Is a fluctuating quantity

o 1*=1.2
4

Moments:1
(xh) = 2f1/2 2% P(x.4)dw 4

Susceptibility:
kpTx = N((2%) — (z4)°)

Binder Parameter:

_ (e
VL) = fiaa-1m)
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Estimation of 7.
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From and
Binder Parameter Ur,(7') Coexistence curve

L~11.7,147,1861 2\ -2 = B(1 - T/T.)
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Static critical behavior

~ = 1.239 (fixed)

10+ .
X (T)
3 i
N=6400
1 T T T UL
0.01 0.03 0.1

e = (T — T,)/T.

I'g = 0.076 = 0.006

v = 0.629 (fixed)

4- 0 .

3_

2_ |
N=6400

0.01 0.03 0.1

e = (T — T,)/T-

&0 = (0.395 + 0.025)0
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Critical slowing down of fluctuations
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Classical Van Hove theory

2

s(q,t) = s(q,0)e Pra?

A
DT_ pCp

Cp, — o0, A finite
= Dr —0asC,"!
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Thermal conductivity A
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B.J. Alder and T.E. Wainwright, PRL 18, 988 (1967).
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CRITICAL DYNAMICS
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Vapor-Liquid critical point Liquid-Liquid critical point
Dy =M pCp = (M +AN/pCp  Dap = L/x = (Ly+AL)/X

Stokes-Einstein relation:

_ AL _ RpkgT
AD = X GWHI(DT)%(T)
Rp =1.05+0.03

Viscosity n diverges as ¢"-008

AD vanishes as ¢ 1008

These theoretical predictions have been confirmed
experimentally quite accurately. For references see:

LJ.V. Sengers and M.R. Moldover, PRL 94, 069601 (2006). J
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Molecular Dynamics Simulations of a Fluid near Its Critical Point

Kamakshi Jagannathan and Arun Yethiraj

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 23 December 2003: published 28 June 2004; publisher error corrected 30 June 2004)

We present computer simulations for the static and dynamic behavior of a fluid near its consolute
critical point. We study the Widom-Rowlinson mixture, which is a two component fluid where like
species do not interact and unlike species interact via a hard core repulsion. At high enough densities
this fluid exhibits a second order demixing transition that is in the Ising universality class. We find that
the mutual diffusion coefficient D 5 vanishes as D p — £71262008 where ¢ is the correlation length.
This is different from renormalization-group and mode coupling theory predictions for model H, which
are Dyp ~ €719 and D, ~ é71, respectively.
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Simulation Method: Molecular dynamics
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Solution of equations of motion with m4 = mpg = m

# Take equilibrated configurations from
semi-grand-canonical Monte Carlo runs with N4 = Np

® Thermalize in the NVT ensemble
® Production runs at NVE ensemble

# Molecular Dynamics: Relaxation exponent z ~ 3

o -
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Self Diffusion D,
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No anomaly at critical point
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n ~ np(Qo&) * im - T . .
= 77 %770 E_Vxn \' o) | b |
with B

no = My(Qo&o)*"; 1, = 0.068  aar ! \>\
Experimental: ny ~ 0.9, 4.0 =
Burstyn et al. B

PRA 28, 1567 (1983). 3-8 o 003 006 o

e=(T-T)/T,
Viscosity exponent fixed at 0.068
L Viscosity amplitude ny = 3.87 4= 0.30 J
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D p seems to vanish as ¢ 10

which is even worse than the result ¢ '2° found by J & Y
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Dap=L/x=(Ly+AL)/x
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ADysp = AL/x

Since AD 45 vanishes in accordance with the
Stokes-Einstein relation, it follows that
In dimensionless units

_ RpT"x'0c __ x —0.567
AL = e = Q1™ e

With Q= g}rgfgo

-
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Finite-size scaling ofAL
f (Fisher'1971) T

In the thermodynamic limit (L — oo)
AL(T) =~QT*e =, vy = 0.567

For finite box (L < oc): basic ansatz (y = L/¢)
AL (T) =QT*W(y)e

SCALING FUNCTION: W(y)/ _______ —1

asy— 0 7
W (y)=y"MY [Wo + Wiyt 4 ] !

as y — oo

Wi(y)—1
L () OO y - J
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Finite-size scaling ansatz: AL, ~ QT W (y)le"; y = L/¢

=

Define Wi (T) = (AL /T™)e™
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Amplitude of Stokes-Einstein relation
- ot o

Q o 67‘(‘77050

['g = 0.076 £ 0.006, & = 0.395 £ 0.025, ny = 3.87 £ 0.30,
Rp =1.05+0.03

= Qp = 0.0028 =+ 0.0004

From Molecular Dynamics simulation

(o = 0.0027 4+ 0.0004

B with £/ = 0.0033 + 0.0008 B
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Non-critical background

DAB:D[)‘FADAB:%:%

. M _ RpkgT
ADap = X 6mé

_ Ly kT
Dy =5 = 15,0

-
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Wave number ¢,

—1 1677658&)
e = = ~T1,

my, = 1.1ng
€0 ~ 0.395
['g ~ 0.076

£~ 0.0033

= qc_l ~ (.8&g

to be compared with

—1
q. =~ 0.8&
as determined from experiments by Burstyn et al. PRA 28,
1567 (1983).

o -
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CONCLUSION

- .

Our computer simulations of critical dynamics are
consistent with theory and with experiment (including the
Stokes-Einstein relation for the critical diffusivity) provided
that one accounts for a noncritical short-range contribution
and for finite-size effects on the appropriate Onsager
coefficient.

Note: Finite-size effects for dynamical long-range critical
behavior are much larger than for static long-range critical

behavior.

o -
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