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Critical Phase transitions
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M is order parameter
Fluids: vapor-critical point
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Fluids: critical point of mixing
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Critical Power Laws and Universality

ξ

ǫ = T−Tc

Tc

ξ is correlation length

χ=(∂M/∂H)T : susceptibility

ξ = ξ0ǫ
−ν ν = 0.629

χ = Γ0ǫ
−γ γ = 1.239

γ ≃ 2ν
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Simulations: binary L-J liquid

all parameters have been made dimensionless with the aid
of the Lennard-Jones parameters

σAA = σBB = σAB = σ
εAA = εBB = 2εAB

rc = 2.5σ

r

Φ, u

r=rc
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Simulation Procedure: Monte Carlo

From atoms at random positions in a box of length L

Equilibration in the canonical ensemble NA = NB, V, T
via MC

Continue equilibration in the semi-grand-canonical
ensemble via MC (SGMC)

– NA + NB fixed, NA fluctuates

• In a finite system at criticality, the slowest relaxation
time τmax ∝Lz

for SGMC z ≃ 2
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In SGMC xA = NA/N is a fluctuating quantity
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Estimation of Tc

From and
Binder Parameter UL(T )

L ≃ 11.7, 14.7, 18.61
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Static critical behavior

γ = 1.239 (fixed)
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Critical slowing down of fluctuations

Classical Van Hove theory

s(q, t) = s(q, 0)e−DT q2t

DT = λ
ρCp

Cp → ∞, λ finite
⇒ DT → 0 as C−1

p
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Thermal conductivity λ

∆λ(W/moC) Tc = 31oC
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B.J. Alder and T.E. Wainwright, PRL 18, 988 (1967).
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CRITICAL DYNAMICS

Vapor-Liquid critical point Liquid-Liquid critical point

DT = λ/ρCp = (λb + ∆λ)/ρCp DAB = L/χ = (Lb + ∆L)/χ

Stokes-Einstein relation:

∆D = ∆L
χ = RDkBT

6πη(T )ξ(T )

RD = 1.05 ± 0.03

Viscosity η diverges as ξ0.068

∆D vanishes as ξ−1.068

These theoretical predictions have been confirmed
experimentally quite accurately. For references see:

J.V. Sengers and M.R. Moldover, PRL 94, 069601 (2006).
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Simulation Method: Molecular dynamics

Solution of equations of motion with mA = mB = m

Take equilibrated configurations from
semi-grand-canonical Monte Carlo runs with NA = NB

Thermalize in the NVT ensemble

Production runs at NVE ensemble

Molecular Dynamics: Relaxation exponent z ≃ 3
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Self Diffusion Ds
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η ≈ ηb(Q0ξ)
xη

⇒ η ≈η0 ǫ−νxη

with
η0 = ηb(Q0ξ0)

xη ; xη = 0.068

Experimental: η0 ≃ 0.9ηb

Burstyn et al.
PRA 28, 1567 (1983). 0.01 0.1
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DAB = L/χ = (Lb + ∆L)/χ
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∆DAB = ∆L/χ

Since ∆DAB vanishes in accordance with the
Stokes-Einstein relation, it follows that

in dimensionless units

∆L = RDT ∗χ∗σ
6πη∗ξ = QT ∗ǫ−0.567

With Q= RDΓ0

6πη0ξ0
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Finite-size scaling of∆L

(Fisher’1971)

In the thermodynamic limit (L → ∞)
∆L(T ) ≈QT ∗ǫ −νλ; νλ = 0.567

For finite box (L < ∞): basic ansatz (y = L/ξ)
∆L

L
(T ) ≈QT ∗W (y)ǫ−νλ

SCALING FUNCTION:

as y → 0

W (y)=yνλ/ν [W0 + W1y
1/ν + ...]

as y → ∞
W (y)→1

y0

1W

0

(  )y
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Finite-size scaling ansatz: ∆LL≈ QT ∗W (y)/ǫνλ; y = L/ξ

Define WL(T ) ≡ (∆LL/T ∗)ǫνλ
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Amplitude of Stokes-Einstein relation

Q = RDΓ0

6πη0ξ0

Γ0 = 0.076 ± 0.006, ξ0 = 0.395 ± 0.025, η0 = 3.87 ± 0.30,
RD = 1.05 ± 0.03

⇒ Q0 = 0.0028 ± 0.0004

From Molecular Dynamics simulation

Q0 = 0.0027 ± 0.0004

with Leff
b = 0.0033 ± 0.0008
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Non-critical background

DAB = Db + ∆DAB = L
χ = Lb+∆L

χ

∆DAB = ∆L
χ = RDkBT

6πηξ

Db = Lb

χ = kBT
16ηbξ2qc
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Wave number qc

q−1
c = 16ηbξ

2

0Lb

T ∗Γ0

ηb = 1.1η0

ξ0 ≃ 0.395
Γ0 ≃ 0.076

Leff
b ≃ 0.0033

⇒ q−1
c ≃ 0.8ξ0

to be compared with
q−1
c ≃ 0.8ξ0

as determined from experiments by Burstyn et al. PRA 28,
1567 (1983).
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CONCLUSION

Our computer simulations of critical dynamics are
consistent with theory and with experiment (including the
Stokes-Einstein relation for the critical diffusivity) provided
that one accounts for a noncritical short-range contribution
and for finite-size effects on the appropriate Onsager
coefficient.

Note: Finite-size effects for dynamical long-range critical

behavior are much larger than for static long-range critical

behavior.
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