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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

Ẏ = −ε−1(Y −X)

when ε = 0.1 and we took X(0) = 2, Y (0) = −1. X is shown in blue, and Y in
green. Also shown in red is the solution of the limiting equation

Ẋ = −X3 + cos(t) + sin(
√

2t)
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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

dY = −ε−1(Y −X)dt + ε−1/2dW

when ε = 0.01 and X(0) = 2, Y (0) = −1. X is shown in blue, and Y in green.
Also shown in red is the solution of the limiting equation

Ẋ = −X3 + X + cos(t) + sin(
√

2t)

Notice how noisy Y is.
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Lecture 1: Theoretical aspects

Averaging principle for singularly perturbed Markov processes;
Homogenization

Lecture 2: Numerical Aspects

HHM-like multiscale integrators;
Seamless integrators (boosting method).

Lecture 3: Generalization to Markov jump processes

Gillespie stochastic simulation algorithm (SSA);
Nested SSA (nSSA).



Lecture 1: Singular perturbations techniques for Markov processes

Consider {
Ẋ = f(X, Y ),

dY = ε−1g(X, Y )dt + ε−1/2σ(X, Y )dW (t),
(?)

Assume that: (i) the evolution Y at every fixed X = x is ergodic with
respect to the probability distribution

dµx(y)

and (ii)

F (x) =

∫
Rm

f(x, y)dµx(y) exists

Then in the limit as ε → 0 the evolution for X solution of (?) is
governed by

Ẋ = F (X)

In addition

F (x) =

∫
Rm

f(x, y)dµx(y) = lim
T→∞

1

T

∫ T

0
f(x, Y x

t )dt

where

dY x = ε−1g(x, Y x)dt + ε−1/2σ(x, Y x)dW (t)



Derivation 1. Consider the simpler equation

Ẋ = f(X, g(t/ε))

Assume that

∀y : |f(x1, y)− f(x2, y)| ≤ K|x1 − x2|
and

∀x : lim
T→∞

1

T

∫ T

0
f(x, g(s))ds = F (x)

Then (assuming Xt=0 = x)

Xt − x =

∫ t

0
f(Xs, g(s/ε))ds

=

∫ t

0
f(x, g(s/ε))ds +

∫ t

0
(f(Xs, g(s/ε))− f(x, g(s/ε))) ds

= t
(ε

t

∫ t/ε

0
f(x, g(u))du

)
+ δ(t, ε)

Letting ε/t→ 0, the term in parenthesis converges to F (x). On the
other hand, for all ε, |δ(t, ε)| ≤ Kt2. Thus, as ε/t → 0, this equation
converges to

Xt − x = tF (x) + O(t2)

which is the forward Euler discretization of Ẋ = F (X).



Derivation 2. Let L be the infinitesimal generator of the Markov
process generated by{

Ẋ = f(X, Y ),

dY = ε−1g(X, Y )dt + ε−1/2σ(X, Y )dW (t),
(?)

i.e.

lim
t→0+

1

t

(
Ex,yφ(Xt, Yt)− φ(x, y)

)
= (Lφ)(x, y)

Then L = L0 + ε−1L1, with{
L0 = f(x, y) · ∇x

L1 = g(x, y) · ∇y + (σσT)(x, y) : ∇y∇y

and

u(x, y, t) = Ex,yφ(Xt, Yt)

satisfies the backward Kolmogorov equation

∂u

∂t
= L0u + ε−1L1u, u|t=0 = φ (BKE)

Look for a solution in the form of

u = u0 + εu1 + O(ε2)

so that limε→0 u = u0 (formally).



Inserting u = u0+εu1+O(ε2) into (BKE) and equating equal powers
in ε leads to the hierarchy of equations

L1u0 = 0,

L1u1 =
∂u0

∂t
− L0u0,

L1u2 = · · ·

(??)

The first equation tells that u0 belong to the null-space of L1.

The assumption that the evolution of Y at every fixed X = x (i.e. the
process with generator L1) is ergodic with respect to the probability
distribution µx(y) implies that for every x, the null-space of L1 is
spanned by functions constant in y, i.e.

u0 = u0(x, t)

Since the null-space of L1 is non-trivial, the next equations each
requires a solvability condition, namely that their right hand-side be-
longs to the range of L1.



To see what this solvability condition actually is, take the expectation
of both sides of the second equation in (??) with respect to dµx(x).
This gives

0 =

∫
Rm

dµx(y)
(∂u0

∂t
− L0u0

)
Explicitly, this equation is

∂u0

∂t
= F (x) · ∇xu0 (�)

where

F (x) =

∫
Rm

f(x, y)dµx(y)

(�) is the backward Kolmogorov equation of the limiting equation

Ẋ = F (X)



Remark: Computing the expectation wrt µx(y) in practice.

We have

(eL1tφ)(x, y)→
∫

Rm

φ(x, y)dµx(y) as t→∞

In other words, if v(x, y, t) satisfies

∂v

∂t
= L1u, v|t=0 = φ

so that formally v(x, y, t) = (eL1tφ)(x, y), then we have

lim
t→∞

v(x, y, t) =

∫
Rm

φ(x, y)dµx(y)

But since v(x, y, t) = Eyφ(Y x) where

dY x = ε−1g(x, Y x)dt + ε−1/2σ(x, Y x)dW (t)

it follows that ∫
Rm

φ(x, y)dµx(y) = lim
t→∞

Eyφ(Y x
t )

= lim
T→∞

1

T

∫ T

0
φ(Y x

t )dt



Example: the Lorenz 96 (L96) model

L96 consists of K slow variables Xk coupled to J ×K fast variables
Yj,k whose evolution is governed by

Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx +
hx

J

J∑
j=1

Yj,k

Ẏj,k =
1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + hyXk

)
.

We will study (L96) with Fx = 10, hx = −0.8, hy = 1, K = 9, J = 8,
and two values of ε: ε = 1/128 and ε = 1/1024.

Empirical way to check whether (L96) converges, as ε→ 0, towards

Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx + Gk(X)

where

Gk(x) =

∫
RKJ

(hx

J

J∑
j=1

yj,k

)
dµx(y)

and µx(y) is the equilibrium measure of

Ẏ x
j,k =

1

ε

(
−Y x

j+1,k(Y
x
j+2,k − Y x

j−1,k)− Y x
j,k + hyxk

)
assuming that it exists for every x.
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Fig. 1. Typical time-series of the slow (black line) and fast (grey line) modes; K = 9,
J = 8, ε = 1/128. The subplot displays a typical snapshot of the slow and fast modes
at a given time.

3.1 Properties of the system and existence of a limiting dynamics

In the parameter setting that we use, the solutions of (19) are chaotic. Typical
time-series of a slow variable Xk and a fast variable Yj,k in the associated sub-
sector are shown in figure 1; the subplot displays a snapshot of the amplitude
of the modes at a given time. The chaotic behavior can be inferred from the
high sensitivity of the system to perturbations in the initial conditions, and
further quantified by the statistical tests described next.

The numerical experiments show that the solutions of (19) settle on an attrac-
tor. One way to visualize (part of) this attractor is to look at the marginal
probability density functions (PDFs) of the slow variable Xk (any k since the
PDFs are all identical by symmetry) shown in figure 2. The mixing character
of the dynamics can be inferred from the decay in time of the auto-correlation
functions (ACFs) defined as (assuming ergodicity)

Ck,k′(t) = lim
T→∞

1

T

∫ T

0
(Xk(t + s) − X̄)(Xk′(s) − X̄)ds, (20)

where

X̄ = lim
T→∞

1

T

∫ T

0
Xkdt, (21)

and similarly for the fast variables – see figure 3. The ACFs of the slow modes
Xk can be fit with great precision by

Ck,k(t) ≈ C0 cos(ωt)e−νt, (22)

17

Typical time-series of the slow (black line) and fast (grey line) modes;
K = 9, J = 8, ε = 1/128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.
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Fig. 2. PDF of the slow variable; K = 9, J = 8, black line: ε = 1/128, grey line:
ε = 1/1024. The insensitivity in ε of the PDFs indicates that the slow variables
have already converged close to their limiting behavior when ε = 1/128.

with appropriate ν, ω, and C0 ≈ Ck,k(0).

Even though there is a separation of time-scales between the slow evolution of
the Xk’s and the fast evolution of the Yj,k’s since ε = 1/128, such separation
is not obviously apparent from the correlation functions of these modes. In
particular, figure 3 shows that, after a short transient decay, the correlation
function of Yj,k decays and oscillates with about the same rate and frequency
as the correlation function of Xk. In fact this short transient decay, which
becomes shorter and shorter as ε is decreased, is the only signature on the
ACFs that Yj,k is faster. This feature should be taken as a warning against
simple procedure to identify fast modes based on computing their correlation
time – here, the correlation time of the Yj,k’s are comparable to the one of
Xk and, in particular, independent of ε. In fact, the unambiguous test to
determine if the Y ′

j,ks are fast is to compute their ACFs at fixed X = x (i.e.
compute the ACFs of the variables Zj,k’s solution of (23) below). These ACFs
decay on a O(ε)-time-scale.

Next we check the existence of a limiting dynamics for the Xk’s as ε → 0.
A necessary condition is that marginal PDFs and correlations functions have
a limit as ε → 0. This is consistent with the numerical experiments – see
figures 2 and 3 and compare black and grey lines. This also indicates that the
value we take, ε = 1/128, is small enough so that the statistical properties
of the slow variables Xk are very close to their limit. Now, the existence of
a limit for the law of the Xk’s as ε → 0 is necessary but not sufficient in
order that these variables also have a limiting dynamics. For this we need to

18

PDF of the slow variable; K = 9, J = 8, black line: ε = 1/128,
grey line: ε = 1/1024. The insensitivity in ε of the PDFs indicates
that the slow variables have already converged close to their limiting
behavior when ε = 1/128.
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Fig. 3. ACFs of the slow (thick line) and fast (thin line) variables; K = 9, J = 8,
black line: ε = 1/128, grey line: ε = 1/1024. The insensitivity in ε of the ACFs
for the slow modes indicates that the slow variables have already converged close
to their limiting behavior when ε = 1/128. The subplot is the zoom-in of the main
graph which shows the transient decay of the ACFs of the fast modes becoming
faster as ε is decreased: this is the only signature in the ACFs of the fact that the
Yj,k’s are faster.

check the ergodicity of the fast modes at fixed Xk = xk, – i.e. the solution of
the following equation corresponding to the equation (4) which we use in the
micro-solver of the multiscale scheme:

Żj,k(x) =
1

ε

(

−Zj+1,k(x)(Zj+2,k(x) − Zj−1,k(x)) − Zj,k(x) + Fy + hyxk

)

. (23)

Figure 4 shows the PDF of

hx

J

J
∑

j=1

Zj,k(x) (24)

for some typical values of x. This is the quantity whose average gives the
effective forcing. The PDFs of (24) are robust against variations in initial
conditions for Zj,k which confirm the ergodicity of (23). It is however worth
noting how different these PDFs look for different x, which indicates that the
back reaction of the slow variables Xk on the fast ones Yj,k is significant in
L96. This can also be seen in the time-series shown in figure 1: for some values
of Xk, the fast variables are locked, whereas they vary widely for other values
of Xk.

19

ACFs of the slow (thick line) and fast (thin line) variables; ε = 1/128,
grey line: ε = 1/1024. The subplot is the zoom-in of the main graph
which shows the transient decay of the ACFs of the fast modes
becoming faster as ε is decreased: this is the only signature in the
ACFs of the fact that the Yj,k’s are faster.
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Fig. 4. Typical PDFs of the coupling term (hx/J)
∑J

j=1 Zj,k(x) for various values
of x. These PDFs are robust against variations in the initial conditions for (23)
indicating that the dynamics of the fast modes conditional on the slow ones being
fixed is ergodic. Notice however how different these PDFs look: this indicates that
the feedback of the slow variables Xk on the fast ones Yj,k is significant in L96.

3.2 Direct-solvers versus the multiscale scheme

For the direct-solver we use the classical fourth-order Runge-Kutta method
with time-step δt. We need to take δt = 2−11 at most for stability, and at
this value of δt we achieve reasonable accuracy (i.e. eyeball insensitivity of
the results on the figures under further refinement of δt and changes in initial
conditions). Thus, the direct simulation has a cost, taken as the number of
time-steps of the fast variables per unit of time, given by

cost(direct) = !1/δt" = 211 = 2048. (25)

To compute the PDFs and the correlation functions of the slow variables we
use a total window of averaging of T = 218. The PDFs are computed from the
time-series by bin-counting. The correlation functions are computed by direct
summation:

Ck,k′(m∆t) =
1

M − m

M−m
∑

m′=1

Xk(m
′∆t)Xk′((m′ + m)∆t) − X̄2, (26)

where

X̄ =
1

M

M
∑

m=1

Xk(m∆t), (27)

20

Typical PDFs of the coupling term (hx/J)
∑J

j=1 Y x
j,k for various values

of x. These PDFs are robust against variations in the initial condi-
tions indicating that the dynamics of the fast modes conditional on
the slow ones being fixed is ergodic (?).
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Fig. 5. Comparison between the ACF obtained via the multiscale scheme (black
line) and via the direct-solver with ε = 1/128 (full grey line); K = 9, J = 8. The
curves are so closed that it is difficult to distinguish them. The subplot displays
the PDF of the slow mode obtained via the multiscale scheme (black line) and
via the direct-solver with ε = 1/128 (full grey line). Here ∆t = 2−7 = 1/128,
N1 = 1, and R = 1. Thus cost(multiscale) = 27 = 128 and the multiscale scheme is
cost(direct)/cost(multiscale) = 24 = 16 times more efficient than the direct-solver.
Also shown in dashed grey are the corresponding ACF and PDF produced by the
truncated dynamics where the coupling of the slow modes Xk with the fast ones,
Yj,k, is artificially switched off. The discrepancy indicates that the effect of the fast
modes on the slow ones is significant in L96.

functions of the slow variables. Figure 5 shows a run with ∆t = 2−7 = 1/128,
N1 = 1, and R = 1, for which cost(multiscale) = 27 = 128, and hence the mul-
tiscale scheme is cost(direct)/cost(multiscale) = 24 = 16 times more efficient
than the direct-solver. And this happens even though the time series for Xk

that we generate with the multiscale scheme is much smaller than the one we
generate in the direct simulations, since Xk is sampled every macro-time-step
∆t in the former case, and every micro-time-step δt in the latter case. This
simply means that even though the sample from the direct-solver is much big-
ger, it is not more significant statistically due to the large correlation between
the slow variables at successive time-steps δt.

3.3 Effective forcing

The results of the last subsection clearly show that the forcing does not need
to be computed accurately at each macro-time-step (which is the case since
we can take R = 1) for the multiscale scheme to apply, as anticipated from

22

Comparison between the ACFs and PDFs; black line: limiting dy-
namics; full grey line: ε = 1/128. Also shown in dashed grey are the
corresponding ACF and PDF produced by the truncated dynamics
where the coupling of the slow modes Xk with the fast ones, Yj,k, is
artificially switched off.



Fig. 7. Black points: scatterplot of the forcing F (x) produced by the multi-
scale scheme (R = 4096). Grey points: scatter plot of the bare coupling term
(hx/J)

∑J
j=1 Zj,k(x) produced by the direct-solver when ε = 1/128. K = 9,

J = 8. The width of the cloud obtained via the multiscale scheme indicates that
Fk(x) ≈ F (xk) is a rather bad approximation. In contrast, the width of the cloud
obtained via the direct-solver is more difficult to interpret since it is also due to
statistical fluctuation.

without wasting time evaluating Fk(x) in regions that are not visited by the
dynamics anyway). On the other hand, one may think of making additional
assumptions about Fk(x), the simplest of which being that it only depends on
the slow variable xk it corresponds to, i.e. Fk(x) ≈ F (xk) – the next natural
approximation would be to assume that Fk(x) ≈ F (xk−1, xk) (using the fact
that the slow variables sustain wave propagating primarily from left to right),
and so on. Testing Fk(x) ≈ F (xk) is elementary since it amounts to verifying
that the scatter-plot of Fk(X) versus Xk defines a function. Such a scatter-
plot is shown in figure 7, which clearly shows that Fk(x) ≈ F (xk) is a bad
approximation. Also shown is the scatter-plot of the bare forcing, which is even
wider since (hx/J)

∑J
j=1 Yj,k is (for all practical purposes at least) a random

quantity – the width of the cloud now corresponds to statistical fluctuations in
(hx/J)

∑J
j=1 Yj,k which arise independently on whether its conditional average

Fk(x) depends or not on xk only. This indicates that the multiscale scheme is
useful in checking assumptions on the effective forcing which are more difficult
to verify from direct numerical simulations due to statistical fluctuations.

24

Black points: scatterplot of the forcing F (x) in the limiting dynamics.
Grey points: scatter plot of the bare coupling term (hx/J)

∑J
j=1 Yj,k

when ε = 1/128.



Diffusive time-scales (homogenization)

Suppose that

F (x) =

∫
Rm

f(x, y)dµx(y) = 0. (∆)

Then the limiting equation on the O(1) time-scale is trivial, Ẋ = 0,
and the interesting dynamics arises on the diffusive time-scale O(ε−1).

Rescale time as t 7→ t/ε and consider then{
Ẋ = ε−1f(X, Y ),

dY = ε−2g(X, Y )dt + ε−1σ(X, Y )dWt.

Proceeding as before we arrive at the following limiting equation
when ε→ 0:

dX = f̄(X)dt + σ̄(X) dBt,

where

(L̄φ)(x) ≡ f̄(x) · ∇xφ(x) + 1
2
(σ̄σ̄T)(x) : ∇x∇xφ(x)

≡
∫ ∞
0

dt

∫
Rm

dµx(y)f(x, y) · ∇x

(
Eyf(x, Y x

t ) · ∇xφ(x)
)

and

dY x = ε−2g(x, Y x)dt + ε−1σ(x, Y x)dWt.



Derivation. The backward Kolmogorov equation for u(x, y, t) =
Ex,yf(X) is now

∂u

∂t
= ε−1L0u + ε−2L1u. (BKE)

Inserting the expansion u = u0 + εu1 + ε2u2 + O(ε2) (we will have to
go one order in ε higher than before) in this equation now gives

L1u0 = 0,

L1u1 = −L0u0,

L1u2 =
∂u0

∂t
− L0u1,

L1u3 = · · ·

The first equation tells that u0(x, y, t) = u0(x, t).

The solvability condition for the second equation is satisfied by as-
sumption because of (∆). Therefore this equation can be formally
solved as

u1 = −L−1
1 L2u0.

Insert this expression in the third equation. The solvability condition
for the resulting equation gives the limiting equation for u0:

∂u0

∂t
= L̄u0, (LBKE)

where

L̄ =

∫
Rm

dµx(y)L0L
−1
1 L0.



To see what this equation is explicitly, notice that −L−1
1 g(y) is the

steady state solution of

∂v

∂t
= L1v + g(y).

The solution of this equation with the initial condition v(y,0) = 0
can be represented by Feynman-Kac formula as

v(y, t) = Ey

∫ t

0
g(Y x

s )ds,

Therefore

−L−1
1 g(y) = Ey

∫ ∞
0

g(Y x
t )dt,

and the operator L̄ in the limiting backward Kolmogorov equation
(LBKE) of the limiting equation

dX = f̄(X)dt + σ̄(X) dBt,



Example: the Lorenz 96 (L96) model

Consider the following modification of (l96)
Ẋk = −ε (Xk−1(Xk−2 −Xk+1) + Xk) +

hx

J

J∑
j=1

(
Yj,k+1 − Yj,k−1

)
Ẏj,k =

1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + Fy

)
+ hyXk,

(L96′)

By symmetry

0 =

∫
RKJ

(hx

J

J∑
j=1

(
yj,k+1 − yj,k−1

))
dµx(y)
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Fig. 14. ACFs and PDFs (subplot) of the slow variable Xk evolving under (57).
Grey line: ε = 1/256; full black line: ε = 1/128; dashed black line: ε = 1/128 with
time rescaled as t → 2t consistent with (56). The near perfect match confirms that
evolution of Xk converges to some limiting dynamics on the O(1/ε) time-scale.

is satisfied. Indeed, the conditional measure entering (51) does not depend on
x since the equation used in the microsolver is

Żj,k =
1

ε
(−Zj+1,k(Zj+2,k − Zj−1,k) − Zj,k + Fy) . (58)

In addition the statistics of Zj,k does not depend on k by periodicity and
therefore the conditional averages of Yj,k+1 and Yj,k−1 at x fixed are the same,
and the correspond term involving their difference in (57) cancels to leading
order.

We study (57) by the multiscale scheme described above by performing two
simulations with J = 2, K = 4, Fy = 10, hx = −0.8, Hy = 1, and ε = 1/256
and 1/128, and comparing the solution using the proper rescaling of time given
in (56). The results are displayed on figure 14 and show the almost perfect
agreement in PDFs and ACFs. The simulation with ε = 1/128 is performed
with a micro-time-step which is twice as big as the one used in the simulation
with ε = 1/256 and therefore corresponds to an efficiency gain ratio of 2.
Notice that, in the present situation, the use of the multiscale scheme can be
bypassed since the dependency in ε is explicit in (57). But this need not be the
case, and the poor man’s multiscale scheme used here can be straightforwardly
generalized to systems such as the one considered in section 5 which contain
hidden slow variables.

38

ACFs and PDFs (subplot) of the slow variable Xk evolving under
(L96’). Grey line: ε = 1/256; full black line: ε = 1/128; dashed black
line: ε = 1/128 with time rescaled as t→ 2t. The near perfect match
confirms that evolution of Xk converges to some limiting dynamics
on the O(1/ε) time-scale.



Coupled truncated Burgers-Hopf (TBH). I. Stable periodic orbits



Ẋ1 =
1

ε
b1X2Y1 + aY1(R

2 − (X2
1 + X2

2))− bX2(α + (X2
1 + X2

2)),

Ẋ2 =
1

ε
b2X1Y1 + ax2(R

2 − (X2
1 + X2

2)) + bX1(α + (X2
1 + X2

2)),

Ẏk = −Re
ik

2

∑
p+q+k=0

U∗pU∗q +
1

ε
b3δ1,kX1X2,

Żk = −Im
ik

2

∑
p+q+k=0

U∗pU∗q ,

where Uk = Yk + iZk.

Truncated system: stable periodic orbit (limit cycle)

(X1(t), X2(t)) = R (cosωt, sinωt) with frequency ω = b(α + R2).



NB: Truncated Burgers (Majda & Timofeyev, 2000)

Fourier-Galerkin truncation of the inviscid Burgers-Hopf equation,
ut +

1
2
(u2)x = 0:

U̇k = −
ik

2

∑
k+p+q=0

|p|,|q|≤Λ

U∗pU∗q , |k| < Λ

Features common with many complex systems. In particular:

• Display deterministic chaos.
• Ergodic on E =

∑
k |Uk|2.

• Scaling law for the correlation functions with tk ≈ O(k−1).

Here: Used as a model for unresolved modes.
Couple truncated Burgers with two resolved variables.





Ẋ1 =
1

ε
b1X2Y1 + aX1(R

2 − (X2
1 + X2

2))− bX2(α + (X2
1 + X2

2)),

Ẋ2 =
1

ε
b2X1Y1 + aX2(R

2 − (X2
1 + X2

2)) + bX1(α + (X2
1 + X2

2)),

Ẏk = −Re
ik

2

∑
p+q+k=0

U∗pU∗q +
1

ε
b3δ1,kX1X2,

Żk = −Im
ik

2

∑
p+q+k=0

U∗pU∗q ,

Limiting SDEs:

dX1 = b1b2X1dt + N1X1X
2
2dt + σ1X2dW (t)

+ aX1(R
2 − (X2

1 + X2
2))dt− bX2(α + (X2

1 + X2
2))dt,

dX2 = b1b2X2dt + N2X2X
2
1dt + σ2X1dW (t)

+ aX2(R
2 − (X2

1 + X2
2))dt + bX1(α + X2

1 + X2
2))dt,
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Contour plots of the joint probability density for the climate variables
X1 and X2; (a) deterministic system with 102 variables; (b) limit
SDE. There only remains a ghost of the limit cycle.
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ministic system with 102 variables (DNS) and the limit SDE.
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Coupled truncated Burgers-Hopf (TBH). II. Multiple equilibria



Ẋ =
1

ε
b1Y1Z1 + λ(1− αx2)x,

Ẏk = −Re
ik

2

∑
p+q+k=0

U∗pU∗q +
1

ε
b2δ1,kXZk,

Żk = −Im
ik

2

∑
p+q+k=0

u∗pu
∗
q +

1

ε̄
b3δ1,kXYk,

Limiting SDE:

dX = −γXdt + σdW (t) + λ(1− αX2)Xdt
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Generalizations

Let Zt ∈ S be the sample path of a continuous-time Markov process
with generator

L = L0 + ε−1L1

and assume that L1 has several ergodic components indexed by x ∈ S′

with equilibrium distribution

µx(z)

Then, as ε→ 0 there exists a limiting on S′ with generator

L̄ = Eµx
L0

Similar results available on diffusive time-scales.

Can be applied to SDEs, Markov chains (i.e. discrete state-space),
deterministic systems (periodic or chaotic), etc.



Other situations with limiting dynamics? Mori-Zwanzig projection

Consider {
Ẋ = f(X, Y ),

Ẏ = g(X, Y ),

and denote by ϕ(X[0,t]) the solution of the equation for Y at time t
assuming that X is known on [0, t]

Observe that ϕ(X[0,t]) is a functional of {Xs, s ∈ [0, t]}.

Then X satisfies the closed equation

Ẋ = f(X, ϕ(X[0,t]))

In general, X is not Markov!

It becomes Markov when Y is faster, or ...?



Other possibility: Weak coupling

The systemẊ =
1

N

N∑
n=1

f(X, Y n),

Ẏ n = g(X, Y n), (all the Y n coupled only via X)

may have a limit behavior as N →∞

Example: Kac-Zwanzig model with Hamiltonian

H(q, p) =
N∑

j=0

p2
j /(2mj) + V (q0) +

N∑
j=1

αj(qj − q0)
2

With specific choices of {mj, αj}j=1,...,N , there exists a closed SDE for
(q0, q̇0, q̈0) as N →∞



Lecture 2: Numerical aspects

Implicit schemes: why they work for stiff ODEs, why they don’t for
rapidly oscillatory and stochastic systems.

HMM-like integrators: based on averaging principle.

Boosting method: an new seamless extrapolation method for
stochastic systems.
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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

Ẏ = −ε−1(Y −X)

when ε = 0.1 and we took X(0) = 2, Y (0) = −1. X is shown in blue, and Y in
green. Also shown in red is the solution of the limiting equation

Ẋ = −X3 + cos(t) + sin(
√

2t)



Consider the stiff ODE{
Ẋ = f(X, Y )

Ẏ = −ε−1(Y − φ(X))
(?)

If ε� 1, Y is very fast and it will adjust rapidly to the current value
of X, i.e. after short O(ε) transient we will have

Y = φ(X) + O(ε) at all times.

Then the equation for slow variables X reduces to

Ẋ = f(X, φ(X)) (??)

Can be integrated efficiently using an implicit scheme, like e.g.:Xn+1 = Xn + ∆tf(Xn+1, Y n+1)

Y n+1 = Y n −
∆t

ε
(Y n+1 − φ(Xn+1))

When ε� ∆t� 1:{
Y n+1 = φ(Xn) + O(∆t) + O(ε),

Xn+1 = Xn + ∆tf(Xn, φ(Xn)) + O(∆t2) + O(ε)

However: Implicit schemes are ill-suited for rapidly oscillatory or
stochastic systems!
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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

dY = −ε−1(Y −X)dt + ε−1/2dW

when ε = 0.01 and X(0) = 2, Y (0) = −1. X is shown in blue, and Y in green.
Also shown in red is the solution of the limiting equation

Ẋ = −X3 + X + cos(t) + sin(
√

2t)

Notice how noisy Y is.



Recall key limit thm: Consider{
Ẋ = f(X, Y ),

dY = ε−1g(X, Y )dt + ε−1/2σ(X, Y )dW (t),
(?)

Assume that: (i) the evolution Y at every fixed X = x is ergodic with
respect to the probability distribution

dµx(y)

and (ii)

F (x) =

∫
Rm

f(x, y)dµx(y) exists

Then in the limit as ε → 0 the evolution for X solution of (?) is
governed by

Ẋ = F (X)

In addition

F (x) =

∫
Rm

f(x, y)dµx(y) = lim
T→∞

1

T

∫ T

0
f(x, Y x

t )dt

where

dY x = ε−1g(x, Y x)dt + ε−1/2σ(x, Y x)dW (t)



Basic HMM-like integrator

Use

Xn+1 = Xn + ∆t F̃ n, X0 = X(t = 0)

Here F̃n is an approximation of F (Xn) obtained as

F̃ n =
1

MT

M+MT∑
m=M

f(Xn, Y n,m)

where

Y n,m+1 = Y n,m +
δt

ε
g(Xn, Y n,m) +

√
δt

ε
σ(Xn, Y n,m)ξm,

Y0,0 = Y (t = 0), Y n+1,0 = Y n,M+MT−1

Why is this better?

Basically, because M and MT are O(1) in ε! In other words, one can
reach an O(1) time-scale with a O(1) number of steps.

In contrast, the direct schemeXp+1 = Xp + δt f(Xp, Y p),

Y p+1 = Y p +
δt

ε
g(Xp, Y p),

takes O(ε−1) steps to reach an O(1) time-scale.



Error estimate (pessimistic):

Thm: For any T > 0, there exists a constant C > 0 such that

E
(

sup
0≤n≤T/∆t

|X(n∆t)−Xn|
)
≤ C

(
√

ε + (∆t)k + (δt/ε)l +

√
ε∆t

MTδt + 1

)



Efficiency depends on how large MT and M needs to be.

Recall that

F̃ n =
1

M

M+MT−1∑
m=MT

f(Xn, Y n,m)

M tampers the relaxation errors;

MT controls the size of the time-averaging window.

The nice surprise: the HMM-like multiscale integrator works even if
MT = 1 (no time averaging) provided only that

ε�
ε∆t

Mδt
� 1

The factor λ = ∆t/Mδt also gives the efficiency boost the HMM-like
multiscale integrators over a direct scheme.

Why is time-averaging unnecessary (since in this case the approxi-
mation on F̃ n is very bad at each time step)?



A simple illustrative example:Ẋ = −Y

dY = −
1

ε
(Y −X)dt +

1
√

ε
dW (t)

Here

dµx(y) =
e−(y−x)2

√
π

dy

and so the limiting equation is

Ẋ = −X

To understand the effect of (not) averaging, use

Xn+1 = Xn −∆t
(
Xn +

ξn

√
2

)
,

ξn = independent N(0,1)

Then

Xn = x(1−∆t)n +
∆t√
2

n−1∑
j=1

(1−∆t)jξn−j

and

E|Xn − x(1−∆t)n|2 =
∆t2

2

n−1∑
j=1

(1−∆t)2j = O(∆t) [n = O(∆t−1)]



Same example, including relaxation errors:Ẋ = −Y

dY = −
1

ε
(Y −X)dt +

1
√

ε
dW (t)

(?)

Scheme:

1. Use:

Y n,m+1 = Y n,m −
δt

ε
(Y n,m −Xn) +

√
δt

ε
ξn,m, Y n,0 = Y n−1,M

2. Use

Xn+1 = Xn −∆t Y n,M

3. Repeat.

Denoting λ = ∆t/Mδt, this integrator approximatesẊ = −Y

dY = −
1

λε
(Y −X)dt +

1√
λε

dW (t)
(??)

Hence, by the limit theorem, it approximates (?) and boost the effi-
ciency by λ if

ε� ελ� 1 or equivalently Mδt� ∆t� ε−1Mδt



Example: the Lorenz 96 (L96) model


Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx +

hx

J

J∑
j=1

Yj,k

Ẏj,k =
1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + hyXk

)
.

(L96)

with Fx = 10, hx = −0.8, hy = 1, K = 9, J = 8, and ε = 1/128.



MT R ∆t Gain ν error(%) ω error(%)
ε = 2−7 2−11 — 0.135 — 3.81 —
Truncated 2−6 — 0.287 113 3.57 6.3
1 4 2−4 32 0.201 49 3.76 1.3
1 2 2−5 32 0.171 27 3.89 2.1
1 1 2−6 32 0.162 20 3.88 1.9
2 1 2−5 32 0.162 20 3.88 1.9
4 1 2−4 32 0.158 17 3.87 1.6
1 1 2−7 16 0.137 2 3.84 0.8
2 1 2−7 8 0.135 0 3.83 0.5

Gain in efficiency of the multiscale scheme over a direct solver for
various values of the control parameters in the multiscale algorithm.
The error and the gain are calculated relative to the simulation
with ε = 2−7. The parameters ν and ω are obtained by fitting by
C0 cos(ωt)e−νt the ACF produced by the simulations.
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Fig. 5. Comparison between the ACF obtained via the multiscale scheme (black
line) and via the direct-solver with ε = 1/128 (full grey line); K = 9, J = 8. The
curves are so closed that it is difficult to distinguish them. The subplot displays
the PDF of the slow mode obtained via the multiscale scheme (black line) and
via the direct-solver with ε = 1/128 (full grey line). Here ∆t = 2−7 = 1/128,
N1 = 1, and R = 1. Thus cost(multiscale) = 27 = 128 and the multiscale scheme is
cost(direct)/cost(multiscale) = 24 = 16 times more efficient than the direct-solver.
Also shown in dashed grey are the corresponding ACF and PDF produced by the
truncated dynamics where the coupling of the slow modes Xk with the fast ones,
Yj,k, is artificially switched off. The discrepancy indicates that the effect of the fast
modes on the slow ones is significant in L96.

functions of the slow variables. Figure 5 shows a run with ∆t = 2−7 = 1/128,
N1 = 1, and R = 1, for which cost(multiscale) = 27 = 128, and hence the mul-
tiscale scheme is cost(direct)/cost(multiscale) = 24 = 16 times more efficient
than the direct-solver. And this happens even though the time series for Xk

that we generate with the multiscale scheme is much smaller than the one we
generate in the direct simulations, since Xk is sampled every macro-time-step
∆t in the former case, and every micro-time-step δt in the latter case. This
simply means that even though the sample from the direct-solver is much big-
ger, it is not more significant statistically due to the large correlation between
the slow variables at successive time-steps δt.

3.3 Effective forcing

The results of the last subsection clearly show that the forcing does not need
to be computed accurately at each macro-time-step (which is the case since
we can take R = 1) for the multiscale scheme to apply, as anticipated from

22

Comparison between the ACFs and PDFs; black line: multiscale
solver; full grey line: direct solver with ε = 1/128. Efficiency gain:
16. Also shown in dashed grey are the corresponding ACF and PDF
produced by the truncated dynamics where the coupling of the slow
modes Xk with the fast ones, Yj,k, is artificially switched off.



Example: L96 model with space-time scale separation


Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx +

hx

J

J∑
j=1

Yj,k

Ẏj,k =
1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + hyXk

)
.

(sL96)

with Fx = 10, hx = −0.8, hy = 1, K = 9, and J = 1/ε = 128.
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Fig. 9. Typical time-series of the slow (black line) and fast (grey line) modes; K = 9,
J = 1/ε = 128. The subplot displays a typical snapshot of the slow and fast modes
at a given time.

are sufficiently weak and short-range on the average. Then, at any given time,
the term (hx/J)

∑J
j=1 Yj,k (and hence (hx/J)

∑J
j=1 Zj,k(x)) self-averages in the

limit as J → ∞ (i.e. ε → 0 since J = #1/ε$) to a limit which, by the law of
large numbers, satisfies

lim
ε→0

εhx

"1/ε#
∑

j=1

Yj,k = hxEXk
Yj,k ≡ F (Xk), (31)

Here EXk
Yj,k is the conditional average of any given Yj,k at fixed Xk, and un-

der the assumption of weak spatial interaction between the Yj,k’s, it can only
depend on the single Xk entering the equation for Yj,k. Thus our working as-
sumption implies that Fk(x) depends only on this Xk, i.e. Fk(x) = F (xk). This
assumption is of course non-trivial since the Yj,k’s are nonlinearly coupled. Yet
it can be verified from the scatter-plot of Fk(X) versus Xk shown in figure 10
that this assumption holds with reasonable accuracy since this scatter-plot is
rather sharp (much sharper than the one shown in figure 7 when ε = 1/128
but J = 8 only). Taking J = 1/ε = 4096 makes it even sharper which supports
that this scatter-plot converges to the graph of a function as J = #1/ε$ → ∞.
As a further test of (31) we also changed the value of hx from the current value,
hx = −0.8, to hx = 1.2 and we checked that this amounts to a simple rescaling
of the scatter-plot by a factor 1.2/(−0.8) – see the subplot of figure 10 .

On figure 10, we can see that in the interval Xk ∈ [−0.5, 0.9], F is a linear
function of Xk, whereas for Xk > 0.9 and Xk < −0.5, F is a two-branch
function of Xk: one branch is the continuation of the linear piece in the center

27

Typical time-series of the slow (black line) and fast (grey line) modes;
K = 9, J = 1/ε = 128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.



Working assumption: spatial interaction between the Yj,k are suffi-
ciently weak and short-range on the average.

Then, at any given time, the term (hx/J)
∑J

j=1 Yj,k self-averages in
the limit as J → ∞ (i.e. ε → 0 since J = b1/εc) to a limit which, by
the law of large numbers, satisfies

lim
ε→0

εhx

b1/εc∑
j=1

Yj,k = hxEXk
Yj,k ≡ F (Xk),

Here EXk
Yj,k is the conditional average of any given Yj,k at fixed Xk.

Notice that this implies F (Xk) instead of F (X1, . . . , XK).

This assumption is corroborated by numerical experiments.



Fig. 10. Scatterplots of the bare forcing εhx
∑!1/ε"

j=1 Yj,k (no averaging here); light
grey: J = 1/ε = 128; dark grey: J = 1/ε = 4096 (K = 9). The sharpness of these
graphs confirm that bare forcing self-averages consistent with (31). The subplot:
J = 1/ε = 1024, hx = 1.2 (instead of hx = −0.8 taken otherwise); it can be
obtained by rescaling the forcing in the main plot respectively by 1.2/(-0.8). The
thin dashed lines shows the stability band X ∈ (−0.5, 8/9) and the corresponding
forcing F (X) = hyhxX.

for the value J ′ = 8, note that if J ′ = 8, the stable interval for the linear
branch of F (Xk) is (−1/2, 1) which is already a fair approximation of the
limiting interval (−1/2, 8/9) as J → ∞).

With the new boundary conditions, there are two obvious ways to implement
the multiscale scheme, with on on-the-fly evaluation of the effective forcing
F (x), or with a tabulation of this function.

4.2.1 Multiscale scheme with on-the-fly evaluation of F (xk).

This proceeds exactly as in section 3. The effective forcing is computed via
the micro-solver and estimator at each time-step. We used ∆t = 2−7, δt =
2−11 (same value as in the direct solver for (19) with the original boundary
conditions), N1 = 1, and R = 1. This gives (including the number of fast modes

29

Scatterplots of the bare forcing εhx
∑b1/εc

j=1 Yj,k (no averaging here);
light grey: J = 1/ε = 128; dark grey: J = 1/ε = 4096 (K =
9). The sharpness of these graphs confirm that bare forcing self-
averages consistent with (??). The subplot: J = 1/ε = 1024, hx =
1.2 (instead of hx = −0.8 taken otherwise); it can be obtained by
rescaling the forcing in the main plot respectively by 1.2/(-0.8).
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Fig. 11. Comparison of ACFs and PDFs (subplot) of the slow mode for various
simulations in J = 1/ε regime. Light grey: J = 128; dark grey: J = 256 (practically
indistinguishable from the previous one); solid black: result from the multiscale
scheme with tabulated forcing (J = 16); dashed black: result from the multiscale
scheme with J = 8, ∆t = 2−7, N1 = R = 1.

in the cost since it is different from the one used in the direct simulations)

cost(multiscale) = R × N1 × J ′ × "1/∆t# = 210 = 1024 (35)

On the other hand, a direct solver for (19) has a cost

cost(direct) = J × "1/δt# = 218, (36)

resulting in a cost(direct)/cost(multiscale) = 256 increase in efficiency in favor
of the multiscale scheme. Yet, it can be seen in figure 11 that the multiscale
scheme performs extremely well in reproducing the functional dependence of
the the PDFs and ACFs of Xk. It should also be stressed that the multiscale
scheme with R = 1 produces a forcing F (Xk) which is only a poor approx-
imation to the asymptotic limit. This can be seen in the scatterplot shown
in figure 12. The reason is simple: Since J ′ is rather small in the multiscale
algorithm, the forcing F (Xk) does not self-average as in the original equa-
tion with J = "1/ε#. This reinforces a point we already made earlier. A good
approximation of the effective forcing at each time-step is not necessary to
obtain a good approximation of the limiting dynamics.
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Comparison of ACFs and PDFs (subplot) of the slow mode for various
simulations in J = 1/ε regime. Light grey: J = 128; dark grey: J =
256 (practically indistinguishable from the previous one); solid black:
result from the multiscale scheme with tabulated forcing (J = 16;
gain = ∞); dashed black: result from the multiscale scheme with
J = 8, ∆t = 2−7, MT = R = 1 (gain = 256).



Fig. 12. Dark grey: scatterplots of the bare forcing εhx
∑!1/ε"

j=1 Yj,k with
J = 1/ε = 4096 (K = 9). Light grey: effective forcing Fk(X) produced on-the-fly by
the multiscale scheme with K = 9, J = 8, N1 = 1, R = 64, ∆t = 2−7. Solid black
line: tabulated effective forcing computed via the multiscale scheme with K = 9,
J = 16.

4.2.2 Multiscale scheme with tabulation of F (xk).

In the present situation, the only advantage of using the multiscale scheme in a
on-the-fly procedure as above is that it may be able to capture the hysteresis
phenomena by which the fast mode remain metastable for a while on the
unstable linear branch of F (Xk). If one neglects this phenomena, we can simply
tabulate F (Xk) once and for all, for instance by saving and processing the
data provided by the on-the-fly procedure. Once F (Xk) has been tabulated,
one can simply simulate the associated limiting equation for Xk, which results
of course in an even bigger efficiency gain in favor of the multiscale scheme
(infinite in fact by the criterion above since we do not have to simulate the fast
variables anymore). We tabulated F (Xk) for J = 16 and the results are also
presented on figure 12. The results of this second procedure in terms of PDF
and ACF for the slow modes, shown in figure 11, indicate that the hysteresis
phenomena described before has a negligible influence on these quantities.

31

Dark grey: scatterplots of the bare forcing εhx
∑b1/εc

j=1 Yj,k with J =
1/ε = 4096 (K = 9). Light grey: effective forcing Fk(X) produced
on-the-fly by the multiscale scheme with K = 9, J = 8, MT = 1,
R = 64, ∆t = 2−7. Solid black line: tabulated effective forcing
computed via the multiscale scheme with K = 9, J = 16.



Warning: The problem of hidden slow variables


Ẋk = −Xk−1(Xk−2 −Xk+1)−

1√
J

J∑
j=1

(
Y 2

j,k+1 − Y 2
j,k−1

)
Ẏj,k = −

1

ε
Yj+1,k(Yj+2,k − Yj−1,k)−

1√
J

Yj,k(Xk+1 −Xk−1).

(hL96)

with J = 1/ε.

The following is an additional slow variables (hidden in (hL96)):

B̄k =
1√
J

J∑
j=1

Y 2
j,k.

Due to the absence of forcing and damping in (hL96), this equation
conserves the energy

E =
K∑

k=1

(
X2

k +
J∑

j=1

Y 2
j,k

)
.
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Fig. 13. ACFs and PDFs of Xk. Grey line: direct simulation with ε = 1/64, J = 512
(δt = 2−10); thick solid black line: multiscale scheme with ∆t = 2−8, J = 32
(efficiency gain: 64); thin black line: multiscale with ∆t = 2−7, J = 8 (efficiency
gain: 512). Dashed black line: multiscale scheme with ∆t = 2−8, J = 32 (efficiency
gain: 64) where the hidden slow variables Bk are not accounted for. The discrepancy
clearly indicates that accounting for the Bk’s is necessary. In all the multiscale
computations N1 = R = 1.

in the dynamics arising on the O(ε−1) time-scale have a very weak effect on
the long-time dynamics and quantities like the PDFs and ACFs. This is not
always the case, though, and even L96 can be tuned in a way that the stochas-
tic corrections arising on the O(ε−1) time-scale do matter. How to deal with
situations of this sort and use the multiscale scheme is the subject of this
section.

Consider the same generic model (1) with an additional property that the
expectation in (3) is of order ε, i.e.

∫

Rn
f(x, z)µx(dz) = εF̄ (x), (51)

where F̄ is some function O(1) in ε. (51) implies that the slow variable is frozen
on the O(1) time-scale and the interesting dynamics arises on the O(ε−1)
time-scale. However, this dynamics is not captured by the limiting equation
Ẋ = εF̄ (X). The reason is that stochastic effects arising due to fluctuations
of the effective forcing around its mean value (51) must be accounted for, and
it can be shown [17,18,26,27] that the effective dynamics is in fact captured
by a stochastic differential equation

Ẋ = εb(X) +
√

εσ(X)Ẇ (t), (52)
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ACFs and PDFs of Xk. Grey line: direct simulation with ε = 1/64,
J = 512 (δt = 2−10); thick solid black line: multiscale scheme with
∆t = 2−8, J = 32 (efficiency gain: 64); thin black line: multiscale
with ∆t = 2−7, J = 8 (efficiency gain: 512). Dashed black line:
multiscale scheme with ∆t = 2−8, J = 32 (efficiency gain: 64) where
the hidden slow variables Bk are not accounted for. The discrepancy
clearly indicates that accounting for the Bk’s is necessary. In all the
multiscale computations MT = R = 1.



Toward seamless multiscale integrators?

Ẋ = −Y

dY = −
1

ε
(Y −X)dt +

1
√

ε
dW (t)

(?)

Recall the scheme:

1. Use:

Y n,m+1 = Y n,m −
δt

ε
(Y n,m −Xn) +

√
δt

ε
ξn,m, Y n,0 = Y n−1,M

2. Use

Xn+1 = Xn −∆t Y n,M

3. Repeat.

Denoting λ = ∆t/Mδt, this integrator approximatesẊ = −Y

dY = −
1

λε
(Y −X)dt +

1√
λε

dW (t)
(??)

Hence, by the limit theorem, it approximates (?) and boost the effi-
ciency by λ if

ε� ελ� 1 or equivalently Mδt� ∆t� ε−1Mδt



Seamless multiscale algorithm – Boosting method

Consider

dZ =
1

ε
h1(Z)dt +

1
√

ε
h2(Z)dW (t) + h3(Z)dt + h4(Z)dW̄ (t)

and assume that there exist slow variables X = φ(Z) which satisfies

dX = F (X)dt + G(X)dW (t) as ε→ 0

1. Use

Zn,m+1 = Zn,m +
δt

ε
h1(Z

n,m) +

√
δt

ε
h2(Z

n,m)ξn,m,

2. Use

Zn+1,0 = Zn,M + ∆t h3(Z
n,M) +

√
∆t h4(Z̃

n,M)ηn

3. Repeat.

Seamless in that one does not need to know the slow variables X
are. Works because it approximates

dZ =
1

λε
h1(Z)dt +

1√
λε

h2(Z)dW (t) + h3(Z)dt + h4(Z)dW̄ (t)

with λ = ∆t/Mδt.

Similar in spirit to Chorin’s artificial compressibility method and the
Car-Parrinello method in molecular dynamics.



More sophisticated seamless integrators?

Reformulating the main theorem:

Consider the system

Żt =
1

ε
f(Zt) + g(Zt)

for some variable Zt ∈ Rn. Assume that there exists a vector valued
function ϕ : Rn → Rm (m < n) such that:

1. We have

f(z) · ∇ϕ(z) = 0;

2. The dynamics

Żx
t = f(Zx

t )

is ergodic on every component indexed by ϕ(z) = x ∈ Rm with
respect to the equilibrium distribution dµx(z).

Then Xt = ϕ(Zt) are slow variables satisfying the following equation

Ẋt = H(Xt)

where

H(x) =

∫
Rn

g(z) · ∇ϕ(z)dµx(z).



The previous result is more general, but unfortunately it does not lead
to a seamless multiscale algorithm because the mapping ϕ defining
the slow variable is usually nonlinear.

In particular, it is easy to see that averaging the original equation,
i.e. using

˙̄Zt = G(ϕ(Z̄t))

where

G(z) =

∫
Rn

g(z)dµx(z),

will, in general not be correct, in the sense that

ϕ(Z̄t) 6= Xt

unless ∇ϕ(z) is a function of x alone, i.e.

∇ϕ(z) = J(ϕ(z))

for some J : Rm → Rn × Rm.

Only if (??) is satisfied do we have

F (z) = G(z)J(z) and ϕ(Z̄t) = Xt

When this is the case, we can build a seamless multiscale algorithm
based only on our ability to decompose the velocity field in its fast
O(ε−1) component and its slow O(1) component.



Seamless multiscale algorithm - bis

If

∇ϕ(z) = J(ϕ(z))

for some J : Rm → Rn×Rm, then we can do the following to integrate

Żt =
1

ε
f(Zt) + g(Zt)

1. Use

Z̃m+1,n = Z̃m,n +
δt

ε
f(Z̃m,n), Z̃0,0 = Zt=0, Z̃0,n+1 = Z̃M+MT ,n

and compute

G̃n =
1

M

M+MT−1∑
m=MT

g(Z̃n,m)

2. Use

Zn+1 = Zn + ∆t G̃n, Z0 = Zt=0

3. Repeat.

Here ϕ(Zn) ≈ X(n∆t).

Notice that the algorithm is totally seamless, i.e. one does not need
to know ϕ nor ∇ϕ.



Lecture 3:

Application to Markov jump processes (aka Kinetic Monte-Carlo - KMC)

Evolution of an isothermal, spatially homogeneous mixture of
chemically reacting molecules contained in a fixed volume V .

NS species of molecules Si, i = 1, . . . , NS involved in
MR reactions Rj, j = 1, . . . , MR.

Each reaction Rj is characterized by a rate function aj(x) and a state
change (or stochiometric) vector νj:

Rj = (aj, νj), R = {R1, . . . , RMR
}.

Let xi be the number of molecules of species Si. Given the state
x = (x1, . . . , xNS

), the occurrences of the reactions on an infinitesimal
time interval dt are independent of each other and the probability for
reaction Rj to happen during this time interval is given by aj(x)dt.
The state of the system after reaction Rj is x + νj.



Equivalently: Given that the state of the system is Xt = x at time t;

1. The probability that the next reaction happens after time t + s is
e−a(x)s where a(x) =

∑MR

j=1 aj(x).

2. Given that a reaction happens at time t + s, the probability that
it be reaction j is aj(x)/a(x).

Gillespie’s Stochastic Simulation Algorithm (SSA)

Randomly choose when the next reaction occurs according to 1.
above; then:
Randomly choose which one occurs according to 2. above.



Gillespie’s Stochastic Simulation Algorithm (SSA)

Let

a(x) =
MR∑
j=1

aj(x).

Assume that the current time is tn, and the system is at state Xn.
We perform the following steps:

1. Generate independent random numbers r1 and r2 with uniform
distribution on the unit interval (0,1]. Let

δtn+1 = −
ln r1

a(Xn)
,

and kn+1 be the natural number such that

1

a(Xn)

kn+1−1∑
j=0

aj(Xn) < r2 ≤
1

a(Xn)

kn+1∑
j=0

aj(Xn),

where a0 = 0 by convention.

2. Update the time and the state of the system by

tn+1 = tn + δtn+1 , Xn+1 = Xn + νkn+1
.

3. Repeat



Suppose that are fast and slow reactions:

Rs
j = (as

j(x), ν
s
j), Rf

j = (ε−1af
j (x), ν

f
j ).

where ε� 1 represents the ratio of time scales of the system.

Then: The time-step between reactions is O(ε) and with probability
1−O(ε) a fast reaction happens.

Difficult to simulate the evolution up to
the O(1) time-scale of the slow reactions!



Simple example:

S1

a1−→←−
a2

S2︸ ︷︷ ︸
fast

, S2

a3−→←−
a4

S3︸ ︷︷ ︸
slow

S3

a5−→←−
a6

S4︸ ︷︷ ︸
fast

.

with
a1 = 105x1, ν1 = (−1,+1, 0, 0),

a2 = 105x2, ν2 = (+1,−1, 0, 0),

a3 = x2, ν3 = ( 0,−1,+1, 0),

a4 = x3, ν4 = ( 0,+1,−1, 0),

a5 = 105x3, ν5 = ( 0, 0,−1,+1),

a6 = 105x4, ν6 = ( 0, 0,+1,−1).

i.e. the first and third reactions are faster than the second one.

Every species is involved in at least one fast reaction so there is no
slow species.

But the variables y1 = x1 + x2 and y2 = x3 + x4 are conserved during
the fast reactions and only evolve during the slow reaction.
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Fig. 1. Evolution of slow variable y1 = x1 + x2 and fast variable x3 on the interme-
diate time scale.

2.2 Effective dynamics on the slow time scale

For the kind of systems discussed above, very often we are interested mostly in
the effective dynamics over the slow time scale. In this section we will derive
the model for this effective dynamics.

The analysis is built upon the perturbation theory developed in [17,19,14–16].
First we need to understand what the slow variables are in the system. Let v
be a function of the state variable x, which we call an observable. We say v(x)
is a slow observable if it does not change during the fast reactions, i.e. if for
any x and any state change vector νf

j associated with the fast reactions one
has

v(x + νf
j ) = v(x). (9)

This is equivalent to saying that the slow observables are conserved quanti-
ties for the fast process Rf defined in (5). A general representation of such
observables is given by special slow observables which are linear functions sat-
isfying (9). We call such slow observables slow variables. It is easy to see that
v(x) = b · x is a slow variable if

b · νf
j = 0, (10)

for all {νf
j }’s. The set of such vectors form a linear subspace in RNS . Let

b1, b2, . . . , bJ be a set of basis vectors of this subspace, and let

yj = bj · x for j = 1, . . . , J, (11)

then y1, y2, · · · , yJ defines a complete set of slow variables, i.e. all slow ob-

6

Evolution of one of the slow variable, y1 = x1 + x2 (the other, y2 =
x3 + x4 behaves similarly), and one of the fast variables, x3, on an
intermediate time scale.

Note that x3 is also the “instantaneous” rate of reaction for the slow
variable y2 = x3 + x4.



Averaging thm:

S1

a1−→←−
a2

S2︸ ︷︷ ︸
fast

, S2

a3−→←−
a4

S3︸ ︷︷ ︸
slow

S3

a5−→←−
a6

S4︸ ︷︷ ︸
fast

.

The slow variables are

y1 = x1 + x2, y2 = x3 + x4

The equilibrium distribution of the virtual fast process is

µy1,y2(x1, x2, x3, x4) =
y1! y2!

x1! x2! x3! x4!
(1/2)y1(1/2)y2δx1+x2=y1

δx3+x4=y2
.

Effective dynamics:

ās
3 = Px2 =

x1 + x2

2
=

y1

2
, ν̄s

3 = (−1,+1),

ās
4 = Px3 =

x3 + x4

2
=

y2

2
, ν̄s

4 = (+1,−1).



Key observation: v(x) = b · x is a slow variable if

b · νf
j = 0

for all νf
j . The set of such vectors form a linear subspace in RNS.

Let b1, b2, . . . , bJ be a set of basis vectors of this subspace, and define

yj = bj · x for j = 1, . . . , J,

then y1, y2, · · · , yJ defines a complete set of slow variables, i.e. all
slow observables can be expressed as functions of y1, y2, · · · , yJ.

In other words, in the present case, the slow variables are linear func-
tions of the original variables! This allows for a seamless formulation
of the limiting theorem (see next).

Notice that the slow variables are not slow species (which do not
exist in general)!



Seamless limit theorem:

Consider a Markov jump process with generator L = L0+ε−1L1 where
(L0f)(x) =

Ns∑
j=1

as
j(x)(f(x + νs

j)− f(x))

(L1f)(x) =

Nf∑
j=1

af
j (x)(f(x + νf

j )− f(x))

Assume that the fast process is ergodic with respect to the foliated
measure µy(x′) indexed by y = b · x, i.e.

1

T

∫ T

0
F (Xf

t )dt→
∑
x′

f(x′)µb·x(x
′)

where Xf
t is a sample path with Xf

t=0 = x of the process with gener-
ator L1.

Then, for any T > 0, there exists a constant C > 0 such that

sup
0≤t≤T

|Ef(Xt)− E
∑
x′

µb·X̄t
(x′)f(x′)| ≤ Cε

where X̄t is a sample path of the process with generator

(L̄f)(x) =
Ns∑

j=1

āj(b · x)(f(x + νs
j)− f(x)) āj(y) =

∑
x′

µy(x
′)as

j(x
′)



Nested Stochastic Simulation Algorithm (nSSA)

1. Inner SSA: Run N independent replicas of SSA with the fast
reactions Rf = {(ε−1af , νf})} only, for a time interval of T0 + Tf .

During this calculation, compute the modified slow rates
for j = 1, · · · , Ms

ãs
j =

1

N

N∑
k=1

1

Tf

∫ Tf+T0

T0

as
j(X

k
τ )dτ,

where Xk
τ is the result of the k-th replica of this auxiliary virtual

fast process at virtual time τ whose initial value is Xk
t=0 = Xn,

and T0 is a parameter we choose in order to minimize the effect
of the transients to the equilibrium in the virtual fast process.

2. Outer SSA: Run one step of SSA for the modified slow reac-
tions R̃s = (ãs, νs) to generate (tn+1, Xn+1) from (tn, Xn).

Then repeat.

Totally seamless!



Error estimate:

For any T > 0, there exist constants C and α independent of
(N, T0, Tf) such that,

sup
0≤t≤T

E |v(x, t)− u(x, t)| ≤ C

(
ε +

e−αT0/ε

1 + Tf/ε
+

1√
N(1 + Tf/ε)

)
.

Here:
v(x, t) = Ef(Xε

t ) where Xε
t is an exact path, and

v(x, t) = Ef(Xt) where Xt is a pathway from the nested SSA.

Efficiency:

Given an error tolerance λ:

cost = O(N(1 + T0/ε + Tf/ε)) = O

(
1

λ2

)
(nested SSA)

cost = O

(
1

ε

)
(direct SSA)



Example: heat shock response of Escherichia Coli

Reaction Rates magnitude

DNA.σ32 → mRNA.σ32 1.4× 10−3

mRNA.σ32 → σ32 + mRNA.σ32 1.19
mRNA.σ32 → degradation 2.38× 10−5

σ32 → RNAPσ32 10.5
RNAPσ32 → σ32 9.88
σ32 + DnaJ → σ32.DnaJ (??) 25.2
DnaJ → degradation (??) 2.97× 10−6

σ32.DnaJ→ σ32 + DnaJ 1.30
DNA.DnaJ + RNAPσ32 → DnaJ + DNA.DnaJ + σ32 3.71
DNA.FtsH + RNAP.σ32 → FtsH + DNA.FtsH + σ32 0
FtsH → degradation 1.48× 10−8

GroEL → degradation 7.76× 10−5

σ32.DnaJ + FtsH → DnaJ + FtsH 8.4
DNA.GroEL + RNAPσ32 → GroEL + DNA.GroEL +σ32 4.78
Protein → UnfoldedProtein (?) 106

DnaJ+ UnfoldedProtein → DnaJ.UnfoldedProtein (?) 107

DnaJ.UnfoldedProtein → DnaJ+ UnfoldedProtein (?) 106

Reaction list for the heat shock model of E. Coli proposed in: R.
Srivastava, M. S. Peterson and W. E. Bently, Biotech. Bioeng. 75,
120–129 (2001). The rate magnitude is the value of ai(x) evaluated
at initial time or equilibrium. The last three reactions marked with a
(?) in the table are fast: they are used in the Inner SSA. All the other
reactions are used in the Outer SSA, and the rates of the reactions
marked with a (??) are averaged.



tion, the generic binding constant between the recombinant

protein and the J-complex was varied. In this way, predic-

tions of a !32-mediated stress response could be generated.
Three scenarios were evaluated: low requirement for chap-

erone mediation, equal requirement, and strong requirement

for chaperone mediation, with their corresponding values

shown in Table II. Although the model of the !32 circuit
was in part lumped, we assumed that it could be modeled as

a Markov process, allowing SPN implementation.

Experimental Conditions and Simulation Details

In our previous work (Srivastava et al., 2000), we demon-

strated that IPTG-induced !32 antisense mRNA mediated a
decrease in !32 sense mRNA, !32 protein, and GroEL pro-
tein. We further demonstrated that, in the presence of !32

antisense, the activity level of a recombinant organophos-

phorous hydrolase was increased substantially. GroEL was

monitored as a marker protein of the !32-related stress re-
sponse, as it has little if any direct impact on !32 metabo-
lism. It provides, therefore, a basis for correlation between

simulations and our previous data as well as others (Gamer

et al., 1992, 1996; Strauss et al., 1987, 1990).

The !32 SPN simulations were run using ULTRASAN, a

software package for modeling stochastic activity networks

(Sanders, 1995). The ULTRASAN software was kindly pro-

vided by Dr. Sanders (Center for Reliable and High-

Performance Computing at the University of Illinois at Ur-

bana–Champaign).

The time duration used for simulations was 30 min. Ex-

perimentally, we found that antisense reached a maximum

within the first 30 min postinduction, and most of the meta-

bolic activity occurred within this timeframe. Also, a 30-

min timeframe enables one to safely neglect the effects of

cell doubling. Places were seeded with 1 to 15 tokens, and

simulations were performed until a steady state was

reached. The number of tokens available at steady state was

considered the nonstressed state of the cell. These steady-

state-level concentrations were subsequently used as the

starting point for all further simulations.

RESULTS

Transient Analysis of Ethanol Shock and
Comparison to Data

When subjected to ethanol (4% v/v), E. coli increased !32

levels by over ten-fold (Srivastava et al., 2000). In simula-

Figure 3. SPN of the !32 genetic regulatory circuit. All simulations were based on the SPN shown. The arcs made up of dotted lines were included only
for the recombinant protein simulations.
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Stochastic petri net diagram for the model of heat shock of E. Coli
[from R. Srivastava, M. S. Peterson and W. E. Bently, Biotech.
Bioeng. 75, 120–129 (2001)]



(N, Tf/10−6) (1,1) (1,4) (1,16) (1,64) (1,256) (1,1024)
CPU 0.62 1.32 2.98 9.56 35.81 142.08

σ32 4.60 8.66 13.60 14.52 14.98 15.00

var(σ32) 4.41 8.11 12.22 13.13 13.73 14.66

Efficiency of nested SSA when N = 1. Since we used N0 = 1000
realizations of the Outer SSA to compute σ32 and var(σ32), the sta-
tistical errors on these quantities is about 0.2. For comparison, the
actual values of these quantities are

σ32 = 14.8± 0.2, var(σ32) = 14.2± 0.2.

and the direct SSA took 19719.2 seconds of CPU time to compute
them.



Example: virus infection model

4 Di Liu

Table 2.1

Reaction channels and reaction rates of the virus infection model.

nucleotides
a1=1.×template

−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome

−−−−−−−−−−−−−−−−−−−−−−→ template

nucleotides + amino acids
a3=1000×template

−−−−−−−−−−−−−−−−−−−−−−−→ struct

template
a4=.25×template

−−−−−−−−−−−−−−−−−−−−−−→ degraded

struct
a5=1.9985×struct

−−−−−−−−−−−−−−−−−−−−−−→ degraded/secreted

genome + struct
a6=7.5d−6×genome×struct

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Fig. 2.1. Reaction network of the virus infection model. The catalytic reactions are represented
by =⇒ lines. The nucleotides and amino acids are assumed to be available at constant concentrations
therefore are omitted.
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When the concentrations of all reacting species in a chemical kinetic system in-
crease to infinity (so does the overall size of the system), it is well known that the for-
ward master equation (2.3) describing discrete kinetic systems converges to a Fokker-
Planck equation describing continuous diffusion processes [16]. The simplest way to
derive the Fokker-Planck equation from the Kolmogorov master equation is the so
called Kramers-Moyal expansion [17, 18], which was implicitly used by Einstein [19]
in the original study of Brownian motions. The idea is to expand the difference oper-

General virus infection model proposed in: R. Srivastava, L. You, J.
Summers and J. Yin, J. Theor. Biol. 218, 309-321 (2002).

The nucleotides and amino acids are assumed to be available at con-
stant concentrations. The reacting species that need to be modeled
are genome, struct, template and virus (Ns = 4). The quantity
genome represents the vehicle of the viral genetic information which
can take the form of DNA, positive-strand RNA, negative-strand
RNA, or some other variants. The structural proteins making up the
virus are denoted by struct. Template refers to the form of the nu-
cleic acid that is transcribed and involved in catalytically synthesizing
each viral component.



Reaction list in the virus model:

nucleotides
template
−−−−−−−→ gnome

nucleotides + genome −−−−−−−−−−−→ template

(fast) nucleotides + amino acids
template
−−−−−−−→ struct

template −−−−−−−−−−−→ degraded

(fast) struct −−−−−−−−−−−→ degraded/secreted

genome + struct −−−−−−−−−−−→ virus

template —— nucleic acids catalyzing the synthesis of the virus
components

genome —— DNA (RNA) transporting the viral genetic infor-
mation

struct —— structural protein



Reactions Rates

nucleotides
template
−−−−−−−→ genome a1 = 1.× template

nucleotides + genome −−−−−−−−−−−→ template a2 = .025× genome
template −−−−−−−−−−−→ degraded a4 = .25× template

genome + struct −−−−−−−−−−−→ virus a6 = 3.75d− 3× genome2 × struct

Tf/ε 1 4 16 64

CPU 154.8 461.3 2068.2 9190.9

template 4.027 3.947 3.796 3.757

var(template) 5.401 5.254 5.007 4.882

Efficiency of the nested SSA for the virus infection model: the
direct SSA cost was 34806.39 seconds of CPU time

The exact values are :

template = 3.7170± 0.005, var(template) = 4.9777± 0.005.
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Left: Growth of the virus; Right: evolution of template
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