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The solution of

{X = —Y3 + cos(t) + sin(v/2t)
Y = - 1Y -X)

when ¢ = 0.1 and we took X(0) =2, Y(0) = —1. X is shown in blue, and Y in
green. Also shown in red is the solution of the limiting equation

X = —X3 4 cos(t) + sin(+/2t)



The solution of

X = —Y3 4 cos(t) + sin(v/2t)
dY = —e (Y — X)dt + e /2dw

when ¢ = 0.01 and X(0) =2, Y(0) = —1. X is shown in blue, and Y in green.
Also shown in red is the solution of the limiting equation

X = —X3+ X 4 cos(t) + sin(v/2t)

Notice how noisy Y is.



Outline

Lecture 1: Theoretical aspects

Averaging principle for singularly perturbed Markov processes;
Homogenization

Lecture 2: Numerical Aspects

HHM-like multiscale integrators;

Seamless integrators (boosting method).

Lecture 3: Generalization to Markov jump processes

Gillespie stochastic simulation algorithm (SSA);
Nested SSA (nSSA).



Lecture 1: Singular perturbations techniques for Markov processes

Consider

X = f(X,Y), ()
{dY = e 1g(X,Y)dt + e YV20(X,Y)dW(t), *

Assume that: (i) the evolution Y at every fixed X = z is ergodic with
respect to the probability distribution

dpz(y)
and (ii)
F(z) = | f(z,y)du.(y) exists
]Rm
Then in the limit as € — 0 the evolution for X solution of (%) is
governed by

X =F(X)
In addition

1 T
F@) = [ femdut) = jim = [ Gy
R — 1 Jo

where
dY?® = e 1g(z, Y)dt + e %0 (2, Y*)dW (t)



Derivation 1. Consider the simpler equation
X = f(X,q(t/e))
Assume that

Vy:  |f(x1,y) — f(z2,y)| < Klz1 — 22
and

T—oo T

T
Vx lim l/ f(x,g(s))ds = F(x)
0

Then (assuming X;—g = x)

Xt—xZ/Otf(Xs,g(s/s))ds |
- /0 f(x, g(s/2))ds + /O (F(Xarg(s/2)) — f(,9(s/€))) ds
e t/e
=5 [ rGgC)d) + 6t

Letting ¢/t — 0, the term in parenthesis converges to F'(x). On the
other hand, for all g, |6(t,e)| < Kt?. Thus, as ¢/t — 0, this equation

converges to

X, —xz=tF(z) + O0(?)
which is the forward Euler discretization of X = F(X).



Derivation 2. Let L be the infinitesimal generator of the Markov

process generated by

{X = f(X,Y),
dY = e 1g(X,Y)dt + e V26(X,Y)dW (1),

M = (Bay 6 (X6, Y5) — 62, )) = (L) (1)

t—0+ ¢
Then L = Lo+ e 1L, with

{Lo = f(z,y) - Vo
L1 = g(z,y) - Vy+ (co?)(z,y) : VyV,

and

u(xa Y, t) — Ex,y(b(Xt, Y;f)
satisfies the backward Kolmogorov equation

ou _
a = Lo’u, —|— £ 1L1’U,, ’U,‘tzo — qb

Look for a solution in the form of

u = ug + eui + O(&?)

so that lim._ou = ug (formally).

()

(BKE)



Inserting u = ug +ecu1 +0O(e?) into (BKE) and equating equal powers
in € leads to the hierarchy of equations

(Liuo = O,
Ouo
L = — — I, , *k
§ Liug Yy 0UQ (x%)
kLl/U’Q T e e .

The first equation tells that ug belong to the null-space of L;.

The assumption that the evolution of Y at every fixed X = x (i.e. the
process with generator L) is ergodic with respect to the probability
distribution p,(y) implies that for every z, the null-space of L; is
spanned by functions constant in y, i.e.

ug — UO(CU, t)

Since the null-space of Li is non-trivial, the next equations each
requires a solvability condition, namely that their right hand-side be-
longs to the range of L;.



To see what this solvability condition actually is, take the expectation
of both sides of the second equation in (xx) with respect to du.(x).
This gives

0= . dpte(y) (% — LoUo)

Explicitly, this equation is

% = F(x) - Vyuo (0)

where

F@) = [ 1 )di)

() is the backward Kolmogorov equation of the limiting equation

X = F(X)



Remark: Computing the expectation wrt u,(y) in practice.

We have

(e"'¢)(z,y) — 5 ¢(x,y)duz(y) ast— oo

In other words, if v(x,y,t) satisfies
ov

—:L’U,, ’U:z
Yy 1 t=0 = ¢

so that formally v(z,y,t) = (e"!¢)(x,y), then we have

lim v(z,y,t) = . ¢(x,y)dp(y)

But since v(z,y,t) = E,¢(Y*) where

dY?® = e 1g(z, Y)dt + e %0 (2, Y*)dW (¢)
it follows that

. ¢(x,y)dpa(y) = lim Eyp(Y;")

= tim —/ S(Y)dt



Example: the Lorenz 96 (L96) model

L96 consists of K slow variables X, coupled to J x K fast variables
Y, whose evolution is governed by

( J
. hy
X = —Xp-1(Xp—o — Xpg1) — X+ Fr + N Z Yk
j=1
: 1
Yie =~ (=Yit16(Yit2k = Yicin) — Vi + hyXy) .

\

We will study (L96) with F, = 10, h,

—0.8, hy=1, K=9, J=38,
and two values of e: e =1/128 and ¢

1/1024.

Empirical way to check whether (L96) converges, as € — 0, towards

X = —Xjo1(Xp—2 — Xpg1) — Xio + Fo + Gi(X)
where

Gi(z) = /RKJ (h—;iygk) dpz(y)
=1

and u;(y) is the equilibrium measure of

.1
Vi = - (Y0s0Fh2n = Yiax) = Vi + hya)

assuming that it exists for every zx.
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Typical time-series of the slow (black line) and fast (grey line) modes;
K =9, J=28,e=1/128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.
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PDF of the slow variable;, K = 9, J = 8, black line: ¢ = 1/128,
grey line: ¢ = 1/1024. The insensitivity in € of the PDFs indicates
that the slow variables have already converged close to their limiting
behavior when ¢ = 1/128.
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ACFs of the slow (thick line) and fast (thin line) variables; e = 1/128,
grey line: e = 1/1024. The subplot is the zoom-in of the main graph
which shows the transient decay of the ACFs of the fast modes
becoming faster as ¢ is decreased: this is the only signature in the
ACFs of the fact that the Y;,'s are faster.



0 ! I_./

-3 -2.5 -2 -1.5 -1 -0.5 0

Typical PDFs of the coupling term (hy/J) ijl Y5, for various values
of x. These PDFs are robust against variations in the initial condi-
tions indicating that the dynamics of the fast modes conditional on
the slow ones being fixed is ergodic (7).
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Comparison between the ACFs and PDFs; black line: limiting dy-
namics; full grey line: ¢ = 1/128. Also shown in dashed grey are the
corresponding ACF and PDF produced by the truncated dynamics
where the coupling of the slow modes X, with the fast ones, Y;;, is
artificially switched off.
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Black points: scatterplot of the forcing F(x) in the limiting dynamics.
Grey points: scatter plot of the bare coupling term (h,/J) Z;’:l Y
when ¢ = 1/128.



Diffusive time-scales (homogenization)

Suppose that

F(z) = [ f(z,y)dp.(y) = 0. (A)

Rm
Then the limiting equation on the O(1) time-scale is trivial, X = 0,
and the interesting dynamics arises on the diffusive time-scale O(e1).

Rescale time as t — t/e and consider then

X = 1f(X,Y),
dY = 2g(X,Y)dt + e o (X,Y)dW;.

Proceeding as before we arrive at the following limiting equation
when ¢ — O:

dX = f(X)dt + o(X) dB;,
where

(L6)(@) = F@) - Vab(@) + 351 (@) 1 VaVad (@)
= [t [ )G - Va(Bf @) - Vei(@)

and
dY?® = e 2g(z,Y®)dt + e to(z, Y*)dW,.



Derivation. The backward Kolmogorov equation for w(x,y,t) =
E.yf(X) is now

0

a—?: — e ou+ e 2L (BKE)
Inserting the expansion u = ug + cu1 + ?us + O(e?) (we will have to
go one order in ¢ higher than before) in this equation now gives

( Liug = 0,
Liu1 = —Louo,
< Ouo
Liur = —815 — Loul,

The first equation tells that uo(x,y,t) = uo(x,t).

The solvability condition for the second equation is satisfied by as-
sumption because of (A). Therefore this equation can be formally
solved as

Uy = —LIlLQUO.

Insert this expression in the third equation. The solvability condition
for the resulting equation gives the limiting equation for ug:

ouo -
— =L LBKE
ot uo, ( )

where
E=/ dpe(y) LoLy * Lo.



To see what this equation is explicitly, notice that —LIlg(y) is the
steady state solution of

ov

5 = Liv + g(y).

The solution of this equation with the initial condition v(y,0) = 0O
can be represented by Feynman-Kac formula as

t
o(y,t) = E, / (V) ds,
0

T herefore

oo

~L7tg(y) =Ey/ g(Y;")dt,
0

and the operator L in the limiting backward Kolmogorov equation
(LBKE) of the limiting equation

dX = F(X)dt + 7(X) dB,



Example: the Lorenz 96 (L96) model

Consider the following modification of (196)

y

J

hy
X = —e(Xpo1(Xp—2 — Xpg1) + Xi) + — b Z k1 — Yje-1)
=1

. 1
Yiw =~ (=Y. (Yt — Yicap) — Vg + Fy) + by X,

Y

By symmetry

Ry
/Rm (7 > (yikr1— yj,k—1)>d,ux(y)

j=1
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ACFs and PDFs (subplot) of the slow variable X, evolving under
(L96"). Grey line: e = 1/256; full black line: e = 1/128; dashed black
line: ¢ = 1/128 with time rescaled as t — 2t. The near perfect match
confirms that evolution of X, converges to some limiting dynamics
on the O(1/e) time-scale.



Coupled truncated Burgers-Hopf (TBH). 1. Stable periodic orbits

’

\

: 1
X1 = gb1X2Y1 + aY1(R? — (X7 + X3)) — bXo(a+ (X7 + X3)),

. 1
X, = ngXlYl + aza(R? — (X7 + X32)) + bX1(a+ (X7 4+ X3)),

. k 1

Yi = —Re o UrUr + Zb3by X1 Xo,
p+atk=0 ©

. k

Zy=-Im = Y U
p+q+k=0

where U, = Y, + 1 4.

Truncated system: stable periodic orbit (limit cycle)

(X1(t), X2(t)) = R(coswt,sinwt) with frequency w = b(a + R?).



NB: Truncated Burgers (Majda & Timofeyev, 2000)

Fourier-Galerkin truncation of the inviscid Burgers-Hopf equation,
uy + %(UQ);E = 0O:

Up = -7 > g, k| < A
k~+p+q=0
Ipl,lg|<A

Features common with many complex systems. In particular:

e Display deterministic chaos.
e Ergodic on E =", |Us|°.
e Scaling law for the correlation functions with ¢, ~ O(k™1).

Here: Used as a model for unresolved modes.
Couple truncated Burgers with two resolved variables.



(%, = gblxm +aX1(R2 — (X2 + X2)) — bXa(a+ (X2 + X2)),
X, = §52X1Y1 +aX2(R? — (X? 4+ X3)) + bX1(a+ (X7 + X3)),

1 . ik 1
Yi=-Re — >  UUr+ —b3d1 kX1 Xz,

Limiting SDEs:

( dX1 = b1br X1dt + N1X1X§dt + OlXQdW(t)
+aX1(R? — (X? 4+ X3))dt — bXa(a + (X7 + X3))dt,

dX> = b1br Xodt + NQXQX%CHZ —+ 0'2X1dW(t)
+ aXo(R? — (X7 4+ X3))dt + bX1(a + X7 + X3))dt,




Contour plots of the joint probability density for the climate variables
X1 and Xs; (a) deterministic system with 102 variables; (b) limit
SDE. There only remains a ghost of the limit cycle.
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ministic system with 102 variables (DNS) and the limit SDE.
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Two-point statistics for X7 and X»5; solid lines - deterministic system
with 102 degrees of freedom; dashed lines - limit SDE; (a), (b)
correlation functions of X7 and X5, respectively; (c) cross-correlation
function of X7 and X5; (d) normalized correlation of energy,

(X3(t)X35(0))
(X3)2 4+ 2(X>(t) X2(0))2

Kg(t) =



Coupled truncated Burgers-Hopf (TBH). II. Multiple equilibria

/

: 1
X =Zh1YiZ1 + M1 — az?)z,
5

. ik e, 1
) Yi=-Re = > UUr+ ~b201 kX 2,

Limiting SDE:

dX = —yXdt + cdW (t) + M(1 — aX?) Xdt
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PDF of X for the simulations of the deterministic model (solid lines)
and the limit SDE (dashed lines) in three regimes, A = 1.2, 0.5, 0.15.
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Two-point statistics of X in three regimes, A = 1.2, 0.5, 0.15 for the
deterministic equations (solid lines) and limit SDE (dashed lines) (a),
(b), (c) correlation function of x; (d), (e), (f) correlation of energy,
K(t), in .



Generalizations

Let Z; € S be the sample path of a continuous-time Markov process
with generator

L=1ILo+e 'L

and assume that L1 has several ergodic components indexed by = € S’
with equilibrium distribution

Mm(z)
Then, as € — 0 there exists a limiting on S’ with generator

L=E,Lo

Similar results available on diffusive time-scales.

Can be applied to SDEs, Markov chains (i.e. discrete state-space),
deterministic systems (periodic or chaotic), etc.



Other situations with limiting dynamics? Mori-Zwanzig projection

Consider

X = f(X,Y),
{Y=9(X,Y),

and denote by ¢(Xp4) the solution of the equation for Y at time ¢
assuming that X is known on [0, ¢]

Observe that ¢(X[o4) is a functional of {X,s € [0,]}.

Then X satisfies the closed equation

X = f(X, o(X[0.4))

In general, X is not Markov!

It becomes Markov when Y is faster, or ...7



Other possibility: Weak coupling
The system
1 N
X =— X, Y™,
an_jlﬂ )

YY" = g(X,Y™), (all the Y™ coupled only via X)

may have a limit behavior as N — oo

Example: Kac-Zwanzig model with Hamiltonian

N N
H(q,p) =) p7/(2m;) + V(q) + Y a;(g; — 90)°

With specific choices of {m;, a;};=1,. n, there exists a closed SDE for
(q07q.07.q.0) as N — oo



Lecture 2: Numerical aspects

Implicit schemes: why they work for stiff ODEs, why they don’t for
rapidly oscillatory and stochastic systems.

HMM-like integrators: based on averaging principle.

Boosting method:

an new seamless extrapolation method for
stochastic systems.



The solution of

{X = —Y3 + cos(t) + sin(v/2t)
Y = - 1Y -X)

when ¢ = 0.1 and we took X(0) =2, Y(0) = —1. X is shown in blue, and Y in
green. Also shown in red is the solution of the limiting equation

X = —X3 4 cos(t) + sin(+/2t)



Consider the stiff ODE

X = f(X)Y)
b 2250 oo )

If ek 1, Y is very fast and it will adjust rapidly to the current value
of X, i.e. after short O(e) transient we will have

Y = ¢(X) + O(e) at all times.

Then the equation for slow variables X reduces to

X = f(X, (X)) ()
Can be integrated efficiently using an implicit scheme, like e.qg.:

Xn—i—l — Xn_I_ Atf(xn—l—l,yn-l—l)

At

When ¢ < At < 1:

{Y”+1 = ¢(X") + 0(At) 4 O(e),
X = X"+ Atf(X™, ¢(X™)) + O(At?) + O(e)

However: Implicit schemes are ill-suited for rapidly oscillatory or
stochastic systems!



The solution of

X = —Y3 4 cos(t) + sin(v/2t)
dY = —e (Y — X)dt + e /2dw

when ¢ = 0.01 and X(0) =2, Y(0) = —1. X is shown in blue, and Y in green.
Also shown in red is the solution of the limiting equation

X = —X3+ X 4 cos(t) + sin(v/2t)

Notice how noisy Y is.



Recall key limit thm: Consider
X = f(X,Y),
— 1 ~1/2 (%)
dY = e 1g(X,Y)dt + ¢ o(X,Y)dW (),
Assume that: (i) the evolution Y at every fixed X = z is ergodic with
respect to the probability distribution
dﬂm(y)
and (ii)

F(x) = Rmf(fc,y)dux(y) exists

Then in the limit as € — 0 the evolution for X solution of (%) is
governed by

X = F(X)
In addition

Fay= [ fy)dpm) = m / f(e, Y7 dt
5

where
dY® = e Yg(z, Y?)dt + e V20 (z, Y*)dW ()



Basic HMM-like integrator

Use
Xt = x4 A¢ B, Xo = X(t=0)

Here F;, is an approximation of F(X,) obtained as

MMy

=M

where

ot [0t
Yn,m—l—l — Yn,m i g(Xn Yn,m) _I_ i O_(Xn,Yn,m)Sm,

YO,O — Y(t — O) Yn—l—l 0 __ — Y™ M+MT—1
Why is this better?

Basically, because M and My are O(1) in €! In other words, one can
reach an O(1) time-scale with a O(1) number of steps.

In contrast, the direct scheme
Xr+l = Xpr 4 5t f(XP,YP),
Yp-l-l — YP _|_ _ g(Xp Yp)

takes O(e~1!) steps to reach an O(l) time-scale.



Error estimate (pessimistic):

Thm: For any T > 0, there exists a constant C > 0 such that

JE( sup | X(nAt) — X”I) < C<\/E-I- (A" + (6t/e)' + \/M;S?:— 1)

0<n<T/At



Efficiency depends on how large My and M needs to be.

Recall that
1 M4+My—1
= ), TGy
m=Mr

M tampers the relaxation errors;

My controls the size of the time-averaging window.

The nice surprise: the HMM-like multiscale integrator works even if
Mr =1 (no time averaging) provided only that

< FAt
8 —_—
Mot

The factor A = At/Mdt also gives the efficiency boost the HMM-like
multiscale integrators over a direct scheme.

Why is timg—averaging unnecessary (since in this case the approxi-
mation on F™ is very bad at each time step)?



A simple illustrative example:
X =-Y
1 1
dY = ——(Y — X)dt + —dW (t)
€ Ve

Here
e~ (y—x)?
d:UJm(y) — dy
and so the limiting equation is
X =-X

To understand the effect of (not) averaging, use
X" = X" — At(X" 4 g—),

V2
" = independent N(0,1)

Then
At n—1
X" =gx(1 - At)"+ — (1 — At)ign—J
V2
and

n—1
E|X™ —2(1 — At)")? = %Q Y (1 - A% =0(At) [n = 0(At™ )]
j=1



Same example, including relaxation errors:

X =-Y
1 1
dY = — (Y — X)dt + —dW (¢) ()
2 Ve
Scheme:
1. Use:
ot [ Ot
Yn,m—l—l — ynm _ _(Yn,m . Xn) + _gn,m’ Yn,O — Yn—l,M
g g
2. Use
X = X" — Ary™M
3. Repeat.

Denoting A = At/Mét, this integrator approximates
X =-Y

4y = — (v — X)dt + — (k)
AE

\/EdW(t)

Hence, by the limit theorem, it approximates (x) and boost the effi-
ciency by M\ if

e el 1l orequivalently Mt << At < e M6t



Example: the Lorenz 96 (L96) model

( J

. h,
X = —Xpo1(Xp—o — Xppy1) — X+ Fo + N Z Y k.
X j=1 (L96)
X 1
Y, = - (_Yj+1,k(Y}+2,k — Y, 1) =Y+ hka:) :
\

with F, =10, h, = —-0.8, hy =1, K =9, J=28, and ¢ = 1/128.



Mr R At | Gain v error(%) w | error(%)
e=2"" 2- 11— 0.135 — 3.81 —
Truncated | 27° — 0.287 113 3.57 6.3

1 4 24 32 0.201 49 3.76 1.3

1 2 25 32 0.171 27 3.89 2.1

1 1 26 32 0.162 20 3.88 1.9

2 1 25 32 0.162 20 3.88 1.9

4 1 24 32 0.158 17 3.87 1.6

1 1 27 16 0.137 2 3.84 0.8

2 1 2~ 38 0.135 0 3.83 0.5

Gain in efficiency of the multiscale scheme over a direct solver for
various values of the control parameters in the multiscale algorithm.
The error and the gain are calculated relative to the simulation
with ¢ = 2=7. The parameters v and w are obtained by fitting by

Co cos(wt)e "t the ACF produced by the simulations.
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Comparison between the ACFs and PDFs; black line: multiscale
solver; full grey line: direct solver with ¢ = 1/128. Efficiency gain:
16. Also shown in dashed grey are the corresponding ACF and PDF
produced by the truncated dynamics where the coupling of the slow
modes X with the fast ones, Y}, is artificially switched off.



Example: L96 model with space-time scale separation

p

J
. Ry

X = —Xpo1(Xp—o — Xpp1) — X+ Fo + N3 g Yk

\ j=1 (sL96)

. 1
Yie =~ (=Yit1.(Yjror — Yicin) — Vi + hyXy) -

\

with F, =10, h, = —-0.8, hy =1, K =9, and J =1/ = 128.
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Typical time-series of the slow (black line) and fast (grey line) modes;
K =9, J=1/e = 128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.



Working assumption: spatial interaction between the Y}, are suffi-
ciently weak and short-range on the average.

Then, at any given time, the term (h,/J) ijl Y; . self-averages in
the limit as J — oo (i.e. ¢ — 0 since J = [1/¢]) to a limit which, by
the law of large numbers, satisfies
[1/€]
|Iﬂg ehy Y}',k = thXkY},k = F(Xk),
E—

j=1
Here Ex,Y; . is the conditional average of any given Y;; at fixed Xj.

Notice that this implies F(X}) instead of F(X1,...,Xk).

This assumption is corroborated by numerical experiments.
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Scatterplots of the bare forcing eh, Z}lz/fJ Y;r (no averaging here);
light grey: J = 1/e = 128; dark grey: J = 1l/e = 4096 (K =
9). The sharpness of these graphs confirm that bare forcing self-
averages consistent with (?7). The subplot: J = 1/e = 1024, h, =
1.2 (instead of h, = —0.8 taken otherwise); it can be obtained by
rescaling the forcing in the main plot respectively by 1.2/(-0.8).
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Comparison of ACFs and PDFs (subplot) of the slow mode for various
simulations in J = 1/e regime. Light grey: J = 128; dark grey: J =
256 (practically indistinguishable from the previous one); solid black:
result from the multiscale scheme with tabulated forcing (J = 16;
gain = oo0); dashed black: result from the multiscale scheme with
J=28, At=2"", Mr =R =1 (gain = 256).
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Dark grey: scatterplots of the bare forcing eh; Zlez/fJ Y with J =
1/e = 4096 (K = 9). Light grey: effective forcing Fj(X) produced
on-the-fly by the multiscale scheme with K = 9, J = 8, My = 1,
R = 64, At = 2=7. Solid black line: tabulated effective forcing
computed via the multiscale scheme with K =9, J = 16.



Warning: The problem of hidden slow variables

( J
) 1
X = —Xp-1(Xp—2 — Xgt1) — Na; Z P — Y1)
{ Jj=1 (hL96)
. 1 1
\Y}',k: = i1k Yigor —Yio1k) — \/—7Yj,k(Xk+1 — Xp-1).
with J = 1/e.

The following is an additional slow variables (hidden in (hL96)):

Due to the absence of forcing and damping in (hL96), this equation
conserves the energy
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ACFs and PDFs of Xj. Grey line: direct simulation with ¢ = 1/64,
J = 512 (6t = 2719): thick solid black line: multiscale scheme with
At = 278, J = 32 (efficiency gain: 64); thin black line: multiscale
with At = 277, J = 8 (efficiency gain: 512). Dashed black line:
multiscale scheme with At = 278 J = 32 (efficiency gain: 64) where
the hidden slow variables B, are not accounted for. The discrepancy
clearly indicates that accounting for the B.'s is necessary. In all the
multiscale computations M = R = 1.



Toward seamless multiscale integrators?

X =-Y
1 1
dY = —=(Y — X)dt + —dW (¢) ()
€ Ve
Recall the scheme:
1. Use:
ot ot
Yn,m—l—l — ynm _ _(Yn,m . Xn) + _&-n,m, Yn,O — Yn—l,M
g g
2. Use
X' = X" — Ary™M
3. Repeat.
Denoting A = At/Mét, this integrator approximates
X =-Y
1 1 (%x)
dY = ——(Y — X)dt + dW (¢
(Y = Xdt oW ()

Hence, by the limit theorem, it approximates (x) and boost the effi-
ciency by M\ if

e el 1 orequivalently Mot < At < e M6t



Seamless multiscale algorithm — Boosting method

Consider

d7Z = éhl(Z)dt + \/ighg(Z)dW(t) + h3(Z)dt + ha(Z)dW (t)

and assume that there exist slow variables X = ¢(Z) which satisfies
dX = F(X)dt + G(X)dW (t) as e — 0
1. Use

zmmtl = gnm 4 % h1(Z™™) + \/ghz(zn’m)ﬁn’m,
2. Use

Zm10 = znM 4 At ha(Z2"M) + VAL ha(Z7M )"
3. Repeat.

Seamless in that one does not need to know the slow variables X
are. Works because it approximates

1

\/EhQ(Z)dW(t) + h3(Z)dt + ha(Z)dW (¢)

1
dZ = —h1(Z)dt +
A\E
with A = At/Mét.

Similar in spirit to Chorin’s artificial compressibility method and the
Car-Parrinello method in molecular dynamics.



More sophisticated seamless integrators?
Reformulating the main theorem:

Consider the system

Zi= (2 + 9(2)

for some variable Z; € R™". Assume that there exists a vector valued
function ¢ : R* — R™ (m < n) such that:

1. We have
f(z) - Ve(z) =0;
2. The dynamics
Zy = f(Z})
is ergodic on every component indexed by ¢(z) = = € R™ with
respect to the equilibrium distribution du.(z).

Then X; = ¢(Z;) are slow variables satisfying the following equation
Xt = H(Xt)
where

H(z) = / 9(2) Vo (2)dua(2).



The previous result is more general, but unfortunately it does not lead
to a seamless multiscale algorithm because the mapping ¢ defining
the slow variable is usually nonlinear.

In particular, it is easy to see that averaging the original equation,
i.e. using

Zy = G(p(Z1))
where
G = [ 9@dud(z),
will, in general not be correct, in the sense that

©(Zy) # Xy
unless Vp(z) is a function of z alone, i.e.

Vo(z) = J(p(2))
for some J : R™ — R"™ x R™,

Only if (?7) is satisfied do we have

F(2) =G()J(z) and o(Z) =X,

When this is the case, we can build a seamless multiscale algorithm
based only on our ability to decompose the velocity field in its fast
O(e~ 1) component and its slow O(1) component.



If

Seamless multiscale algorithm - bis

V(z) = J(p(2))

for some J : R™ — R™ x R™, then we can do the following to integrate

3.

Zy = %f(Zt) + 9(Zy)

. Use

~

. ot ~ ~ - _
Zm41n = Zmn + — f(Zmn), Zoo= Zi=0, Zon+1= ZM+Myn

and compute

~ 1 MA M =1 ~
G iY; m;h 9(Znm)
. Use
Zpi1 = Zn+ At Gy, Zo = Zi—o
Repeat.

Here o(Z,) ~ X(nAt).

Notice that the algorithm is totally seamless, i.e. one does not need
to know ¢ nor V.



Lecture 3:

Application to Markov jump processes (aka Kinetic Monte-Carlo - KMC)

Evolution of an isothermal, spatially homogeneous mixture of
chemically reacting molecules contained in a fixed volume V.

Ng species of molecules S;, t = 1,..., Ng involved in
Mp reactions R;, 7 =1,..., Mp.

Each reaction R; is characterized by a rate function a;(x) and a state
change (or stochiometric) vector v;:

Rj — (aj,yj), R = {Rl, .. -;RMH}-

Let x; be the number of molecules of species S;. Given the state
x = (x1,...,2N,), the occurrences of the reactions on an infinitesimal
time interval dt are independent of each other and the probability for
reaction R; to happen during this time interval is given by a;(x)dt.
T he state of the system after reaction R; is x + vj.



Equivalently: Given that the state of the system is X; = z at time ¢;

1. The probability that the next reaction happens after time ¢t + s is
e~ )5 where a(z) = Zj\ﬁl a;(z).

2. Given that a reaction happens at time ¢t + s, the probability that
it be reaction j is a;j(x)/a(z).

Gillespie’s Stochastic Simulation Algorithm (SSA)

Randomly choose when the next reaction occurs according to 1.
above; then:
Randomly choose which one occurs according to 2. above.



Gillespie’s Stochastic Simulation Algorithm (SSA)

Let
My
a(x) = Zaj(:c).
j=1
Assume that the current time is ¢,,, and the system is at state X,,.
We perform the following steps:

1. Generate independent random numbers 1 and r» with uniform
distribution on the unit interval (0, 1]. Let

In rq

a(Xn),

and k,4+1 be the natural number such that

5tn+1 — —

1
CLj(Xn) <1y < a'j(Xn)a
a(X) ; i a(Xn>]§

kny1—1 1 [

where ag = 0 by convention.

2. Update the time and the state of the system by
tnt1 = tn + 0lpy1 Xpt1 = Xn+ v,
3. Repeat



Suppose that are fast and slow reactions:
_ f— (—1_f f
R; — (aj(x),yj 3 Rj = (e a; (37)7’/]')-
where ¢ < 1 represents the ratio of time scales of the system.

Then: The time-step between reactions is O(e) and with probability
1 — O(e) a fast reaction happens.

Difficult to simulate the evolution up to
the O(1) time-scale of the slow reactions!



Simple example:

Sy <:> S, S, <:> S5 S5 <Z:> S,
T aw T oo R a—
with

a1 = 10°z1, v1 = (—1,41, 0, 0),

ar> = 10°z5, v, = (+1,—1, 0, 0),

a3z = T2, v3=(0,-1,4+1, 0),

aq = T3, va = ( 0,+1,-1, 0),

as = 10°z3, vs = (0, 0,—1,41),

ag = 10°z4, ve = (0, 0,+41,—-1).

i.e. the first and third reactions are faster than the second one.

Every species is involved in at least one fast reaction so there is no
slow species.

But the variables y; = 1 4+ x> and y> = x3 4+ x4 are conserved during
the fast reactions and only evolve during the slow reaction.
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Evolution of one of the slow variable, y1 = x1 + x> (the other, y> =
x3 + x4 behaves similarly), and one of the fast variables, x3, on an
intermediate time scale.

Note that z3 is also the “instantaneous’” rate of reaction for the slow
variable yo» = x3 + 4.



Averaging thm:

aq as as
S, == 5o, S, = S3 S3 = S,.
N a2 _/ N @4 _/ N a6
fast slow fast
The slow variables are
Y1 = x1 + T2, Y2 = x3 + x4

The equilibrium distribution of the virtual fast process is

y1! yo!
1! ol 3! 24!

My ,y» (wla X2, I3, $4) — (1/2)y1(1/2)y25x1+x2=y15x3+x4=y2-

Effective dynamics:

a3=Pa;2:#:%, v3 = (—1,41),
a4=Pa;3:@ =%, v = (+1,-1).



Key observation: v(x) = b-x is a slow variable if
f
b - v; =
for all V]f. The set of such vectors form a linear subspace in RYs,

Let b1,bs,...,by be a set of basis vectors of this subspace, and define
Yy =05 -x for 73=1,...,J,

then y1,y2,--- ,y; defines a complete set of slow variables, i.e. all
slow observables can be expressed as functions of yi1,y2, - ,y;J.

In other words, in the present case, the slow variables are linear func-
tions of the original variables! This allows for a seamless formulation
of the limiting theorem (see next).

Notice that the slow variables are not slow species (which do not
exist in general)!



Seamless limit theorem:

Consider a Markov jump process with generator L = Lo+¢~1L, where

i

N,
(Lof)(x) =) ai@)(f(z 4+ v5) — f(2))

. 7=t

Ny
(Lif)(@) =) al(@)(f(z+v)) - f(2))
\ j=1
Assume that the fast process is ergodic with respect to the foliated
measure p,(x') indexed by y =1»b-x, i.e.

1 [ / /
?/O F(X{)dtezx;f(w ) b (')

where th iIs a sample path with X{fzo — x oOf the process with gener-
ator L.

Then, for any T > 0, there exists a constant C > 0 such that

sup [Ef(X) —E .z (x)f()] < Ce
0<t<T ”

where X; is a sample path of the process with generator

N,
CHE) = a0-)F@+v) - @) G0 =Y )

j=1



Nested Stochastic Simulation Algorithm (nSSA)

1. Inner SSA: Run N independent replicas of SSA with the fast
reactions R/ = {(e~ta’/,v7})} only, for a time interval of Tp + Ty.

During this calculation, compute the modified slow rates
for g =1,---, M;

1 N 1 Ty+To

==Y — a$ (XM dr,
’ N;ﬂé X)dr

where XF¥ is the result of the k-th replica of this auxiliary virtual
fast process at virtual time T whose initial value is XF , = X,,
and 1p is @ parameter we choose in order to minimize the effect
of the transients to the equilibrium in the virtual fast process.

2. Outer~SSA: Run one step of SSA for the modified slow reac-
tions R®* = (a*,v®) to generate (t,4+1, Xnt1) from (tn, Xn).

Then repeat.

Totally seamless!



Error estimate:

For any T° > 0, there exist constants C and « independent of
(N, To,Ty) such that,

e—aTo/e 1
E t) — )< -
Sup. w(z,t) —u(z, )] < <€+ 14T/ T VN1 +Tf/6)>

Here:

v(z,t) = Ef(Xf) where X{ is an exact path, and

v(z,t) = Ef(X:) where X; is a pathway from the nested SSA.
Efficiency:

Given an error tolerance \:

cost = O(N(1 +To/e+Ty/e)) = O (%) (nested SSA)

1
cost =0 (—) (direct SSA)

€



Example: heat shock response

of Escherichia Coli

Reaction Rates magnitude
DNA.o32 — mRNA.s32 1.4 x 103
MRNA.032 — 632 + mMRNA.s32 1.19
MRNA.o3> — degradation 2.38 x 107°
03> — RNAPg32 10.5
RNAPg32 — 532 0.88
032 4+ DnaJd — o32.DnaJd (%%) 25.2
DnaJ — degradation (xx) 2.97 x 107°
032.DnalJ— o032 4 DnalJ 1.30
DNA.DnaJ + RNAP¢3? — DnaJ + DNA.DnaJ + 032 3.71
DNA.FtsH 4+ RNAP.s32 — FtsH 4+ DNA.FtsH + 032 0
FtsH — degradation 1.48 x 1078
GroEL — degradation 7.76 x 107>
032.DnaJ + FtsH — DnaJ + FtsH 8.4
DNA.GroEL 4+ RNAPo32 — GroEL 4+ DNA.GroEL +¢32 4.78
Protein — UnfoldedProtein (%) 100
DnaJ+ UnfoldedProtein — DnaJ.UnfoldedProtein (x) 107
DnaJ.UnfoldedProtein — DnaJ+ UnfoldedProtein (x) 106

Reaction list for the heat shock model

of E. Coli proposed in:

Srivastava, M. S. Peterson and W. E. Bently, Biotech. Bioeng. (5,

120—129 (2001). The rate magnitude is the value of a;(z) evaluated
at initial time or equilibrium. The last three reactions marked with a
(%) in the table are fast: they are used in the Inner SSA. All the other
reactions are used in the Outer SSA, and the rates of the reactions

marked with a (x%) are averaged.
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Stochastic petri net diagram for the model of heat shock of E. Coli
[from R. Srivastava, M. S. Peterson and W. E. Bently, Biotech.
Bioeng. 75, 120—129 (2001)]



(N, T¢/107°) || (1,1) | (1,4) | (1,16) | (1,64) | (1,256) | (1,1024)
CPU 0.62 | 1.32 | 2.98 9.56 35.81 142.08
032 460 | 8.66 | 13.60 | 14.52 | 14.98 15.00

var(c3?) 4.41 | 8.11 | 12.22 | 13.13 13.73 14.66

Efficiency of nested SSA when N = 1.

032 =14.84+0.2,

them.

Since we used No = 1000

realizations of the Outer SSA to compute 32 and var(c3?), the sta-
tistical errors on these quantities is about 0.2. For comparison, the
actual values of these quantities are

var(c3?) = 14.24+0.2.
and the direct SSA took 19719.2 seconds of CPU time to compute




Example: virus infection model

VITUS

ag

genome

a2

—>|

‘%HHHHHEEb

General virus infection model proposed in: R. Srivastava, L. You, J.
Summers and J. Yin, J. Theor. Biol. 218, 309-321 (2002).

template struct

degraded
secreted

The nucleotides and amino acids are assumed to be available at con-
stant concentrations. The reacting species that need to be modeled
are genome, struct, template and virus (N; = 4). The quantity
genome represents the vehicle of the viral genetic information which
can take the form of DNA, positive-strand RNA, negative-strand
RNA, or some other variants. The structural proteins making up the
virus are denoted by struct. Template refers to the form of the nu-
cleic acid that is transcribed and involved in catalytically synthesizing
each viral component.



Reaction list in the virus model:

nucleotides
nucleotides + genome

(fast) nucleotides + amino acids
template
(fast) struct

genome - struct

template
_—

gnome
template

template
_

struct
degraded

degraded/secreted
virus

template nucleic acids catalyzing the synthesis of the virus
components

genome — DNA (RNA) transporting the viral genetic infor-
mation

Struct EE— structural protein



Reactions Rates

nucleotides template genome a1 = 1. X template
nucleotides 4+ genome template a> = .025 X genome
template degraded as = .25 X template
genome -+ struct VITUS ae = 3.75d — 3 X genome? X struct
T;/e 1 4 16 64
CPU 154.8 | 461.3 | 2068.2 | 9190.9
template 4.027 | 3.947 | 3.796 3.757
var(template) || 5.401 | 5.254 | 5.007 | 4.882

Efficiency of the nested SSA for the virus infection model: the
direct SSA cost was 34806.39 seconds of CPU time

The exact values are :

template = 3.7170 + 0.005, var(template) = 4.9777 £+ 0.005.
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Left: Growth of the virus; Right: evolution of template
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