
CHAPTER 7

Wiener Process

Chapters 6, 7 and 8 offer a brief introduction to stochastic differential equations
(SDEs). A standard reference for the material presented hereafter is the book by
R. Durett, “Stochastic Calculus: A Practical Introduction” (CRC 1998). For a
discussion of the Wiener measure and its link with path integrals see e.g. the book
by M. Kac, “Probability and Related Topics in Physical Sciences” (AMS, 1991).

1. The Wiener process as a scaled random walk

Consider a simple random walk {Xn}n∈N on the lattice of integers Z:

(1) Xn =

n
∑

k=1

ξk,

where {ξk}k∈N is a collection of independent, identically distributed (i.i.d) random
variables with P(ξk = ±1) = 1

2 . The Central Limit Theorem (see the Addendum
at the end of this chapter) asserts that

XN√
N

→ N(0, 1) (≡ Gaussian variable with mean 0 and variance 1)

in distribution as N → ∞. This suggests to define the piecewise constant random
function WN

t on t ∈ [0,∞) by letting

(2) WN
t =

X⌊Nt⌋√
N

,

where ⌊Nt⌋ denotes the largest integer less than Nt and in accordance with standard
notations for stochastic processes, we have written t as a subscript, i.e. WN

t =
WN (t).

It can be shown that as N → ∞, WN
t converges in distribution to a stochastic

process Wt, termed the Wiener process or Brownian motion1, with the following
properties:

(a) Independence. Wt − Ws is independent of {Wτ}τ≤s for any 0 ≤ s ≤ t.
(b) Stationarity. The statistical distribution of Wt+s−Ws is independent of s

(and so identical in distribution to Wt).
(c) Gaussianity. Wt is a Gaussian process with mean and covariance

EWt = 0, EWtWs = min(t, s).

1The Brownian motion is termed after the biologist Robert Brown who observed in 1827

the irregular motion of pollen particles floating in water. It should be noted, however, that

a similar observation had been made earlier in 1765 by the physiologist Jan Ingenhousz about

carbon dust in alcohol. Somehow Brown’s name became associated to the phenomenon, probably

because Ingenhouszian motion does not sound that good. Some of us with complicated names are

sensitive to this story.

1
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Figure 1. Realizations of WN
t for N = 100 (blue), N = 400

(red), and N = 10000 (green).

(d) Continuity. With probability 1, Wt viewed as a function of t is continuous.

To show independence and stationarity, notice that for 1 ≤ m ≤ n

Xn − Xm =

n
∑

k=m+1

ξk

is independent of Xm and is identically distributed to Xn−m. It follows that for
any 0 ≤ s ≤ t, Wt − Ws is independent of Ws and satisfies

(3) Wt − Ws
d
= Wt−s,

where
d
= means that the random process on both sides of the equality have the same

distribution. To show Gaussianity, observe that at fixed time t ≥ 0, WN
t converges

as N → ∞ to Gaussian variable with mean zero and variance t since

WN
t =

X⌊Nt⌋√
N

=
X⌊Nt⌋
√

⌊Nt⌋

√

⌊Nt⌋√
N

→ N(0, 1)
√

t
d
= N(0, t).

In other words,

(4) P(Wt ∈ [x1, x2]) =

∫ x2

x1

ρ(x, t)dx

where

(5) ρ(x, t) =
e−x2/2t

√
2πt

.

In fact, given any partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, the vector (WN
t1 , . . . , WN

tn
)

converges in distribution to a n-dimensional Gaussian random variable. Indeed,
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using (3) recursively together with (4) and (5), it is easy to see that the probability
density that (Wt1 , . . . , Wtn

) = (x1, . . . , xn) is simply given by

(6) ρ(xn − xn−1, tn − tn−1) · · · ρ(x2 − x1, t2 − t1)ρ(x1, t1)

A simple calculation using

EWt =

∫

R

xρ(x, t)dx, EWtWs =

∫

R2

yxρ(y − x, t − s)ρ(x, s)dxdy.

for t ≥ s and similarly for t < s gives the mean and covariance specified in (b).
Notice that the covariance can also be specified via

E(Wt − Ws)
2 = |t − s|,

and this equation suggests that Wt is not a smooth function of t. In fact, it can
be showed that even though Wt is continuous almost everywhere (in fact Hölder
continuous with exponent γ < 1/2), it is differentiable almost nowhere. This is
consistent with the following property of self-similarity: for λ > 0

Wt
d
= λ−1/2Wλt,

which is easily established upon verifying that both Wt and λ−1/2Wλt are Gaussian
processes with the same (zero) mean and covariance.

More about the lack of regularity of the Wiener process can be understood from
first passage times. For given a > 0 define the first passage time by Ta ≡ inf{t :
Wt = a}. Now, observe that

(7) P(Wt > a) = P(Ta < t & Wt > a) = 1
2P(Ta < t).

The first equality is obvious by continuity, the second follows from the symmetry
of the Wiener process; once the system has crossed a it is equally likely to step
upwards as downwards. Introducing the random variable Mt = sup0≤s≤t Ws, we
can write this identity as:

(8) P(Mt > a) = P(Ta < t) = 2P(Wt > a) = 2

∫ ∞

a

e−z2/2t

√
2πt

dz,

where we have invoked the known form of the probability density function for Wt

in the last equality. Similarly, if mt = inf0≤s≤t Ws,

(9) P(mt < −a) = P(Mt > a).

But this shows that the event “Wt crosses a” is not so tidy as it may at first appear
since it follows from (8) and (9) that for all ε > 0:

(10) P(Mε > 0) > 0 and P(mε < 0) > 0.

In particular, t = 0 is an accumulation point of zeros: with probability 1 the first
return time to 0 (and thus, in fact, to any point, once attained) is arbitrarily small.

2. Two alternative constructions of the Wiener process

Since Wt is a Gaussian process, it is completely specified by it mean and co-
variance,

(11) EWt = 0 EWtWs = min(t, s).

in the sense that any process with the same statistics will also form a Wiener
process. This observation can be used to make other constructions of the Wiener
process. In this section, we recall two of them.
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The first construction is useful in simulations. Define a set of independent
Gaussian random variables {ηk}k∈N, each with mean zero and variance unity, and
let {φk(t)}k∈N be any orthonormal basis for L2[0, 1] (that is, the space of square
integral functions on the unit interval). Thus any function f(t) in this set can be
decomposed as f(t) =

∑

k∈N
αkφk(t) for an appropriate choice of the coefficients

αk. Then, the stochastic process defined by:

(12) Wt =
∑

k∈N

ηk

∫ t

0

φk(t′)dt′,

is a Wiener process in the interval [0, 1]. To show this, it suffices to check that it
has the correct pairwise covariance – since Wt is a linear combination of zero mean
Gaussian random variables, it must itself be a Gaussian random variable with zero
mean. Now,

(13)

EBtBs =
∑

k,l∈N

Eηkηl

∫ t

0

φk(t′)dt′
∫ s

0

φl(s
′)ds′

=
∑

k∈N

∫ t

0

φk(t′)dt′
∫ s

0

φk(s′)ds′,

where we have invoked the independence of the random variables {ηk}. Now to
interpret the summands, start by defining an indicator function of the interval
[0, τ ] and argument t

χτ (t) =

{

1 if t ∈ [0, τ ]

0 otherwise.

If τ ∈ [0, 1], then this function further admits the series expansion

(14) χτ (t) =
∑

k

φk(t)

∫ τ

0

φk(t′)dt′.

Using the orthogonality properties of the {φk(t)}, the equation (13) may be recast
as:

(15)

EBtBs =
∑

k,l∈N

∫ 1

0

(
∫ t

0

φk(t′)dt′φk(u)

) (
∫ s

0

φl(s
′)ds′φl(u)

)

du

=

∫ 1

0

χt(u)χs(u)du

=

∫ 1

0

χmin(t,s)(u)du = min(t, s)

as required.
One standard choice for the set of functions {φk(t)} is the Haar basis. The

first function in this basis is equal to 1 on the half interval 0 < t < 1/2 and to -1
on 1/2 < t < 1, the second function is equal to 2 on 0 < t < 1/4 and to -2 on
1/4 < t < 1/2 and so on. The utility of these functions is that it is very easy to
construct a Brownian bridge: that is a Wiener process for in which the initial and
final values are specified: W0 = W1 = 0. This may be defined by:

(16)
o

Wt= Wt − tW1 ,
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if using the above construction then it suffices to omit the function φ1(t) from the
basis.

The second construction of the Wiener process (or, rather, of the Brownian
bridge), is empirical. It comes under the name of Kolmogorov-Smirnov statis-

tics. Given a random variable X uniformly distributed in the unit interval (i.e.
P(0 ≤ X < x) = x), and data {X1, X2, . . .Xn}, define a sample-estimate for the
distribution:

(17) F̂n(x) ≡ 1

n
(number of Xk < x, k = 1, ldots, n) =

1

n

n
∑

k=1

χ(−∞,x)(Xk),

equal to the relative number of data points that lie in the interval xk < x. Now
the Law of Large numbers tells us that for fixed x, F̂n(x) → x as n → ∞. In fact,
the error in our determination of the distribution of the random variable can be
determined from the results, valid for fixed n:

EF̂n(x) = x, E(F̂n(x) − x)2 = x(1 − x)

which, when combined with the Central Limit Theorem, implies that in the limit
of n → ∞:

(18)
√

n(F̂n(x) − x)
d→ N(0, x(1 − x)).

This result can be generalized to x is not fixed: as n → ∞

(19)
√

n(F̂n(x) − x)
d→ Wx − xW1.

3. The Feynman-Kac formula

Given a function f(x), define

(20) u(x, t) = Ef(x + Wt)

This is the Feynman-Kac formula for the solution of the diffusion equation:

(21)
∂u

∂t
=

1

2

∂2u

∂x2
u(x, 0) = f(x).

To show this note first that:

u(x, t + s) = Ef(x + Wt+s) = Ef(x + (Wt+s − Wt) + Wt)

= Eu(x + Wt+s − Wt, t) ≡ Eu(x + Ws, t)

where we have used the independence of Wt+s − Wt and Wt. Now, observe that

∂u

∂t
(x, t) = lim

s→0+

1

s
(u(x, t + s) − u(x, t))

= lim
s→0+

1

s
E(u(x + Ws, t) − u(x, t))

= lim
s→0+

1

s

(

∂u

∂x
(x, t)EWs +

1

2

∂2u

∂x2
(x, t)EW 2

s + o(s)

)

,

where we have Taylor-series expanded to obtain the final equality. The result follows
by noting that EWs = 0 and EW 2

s = s.
The formula admits many generalizations. For instance: If

(22) v(x, t) = Ef(x + Wt) +

∫ t

0

Eg(x + Ws)ds,
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then the function v(x, t) satisfies the diffusion equation with source-term the arbi-
trary function g(x):

(23)
∂v

∂t
=

1

2

∂2v

∂x2
+ g(x) v(x, 0) = f(x).

Or: If

(24) w(x, t) = E

(

f(x + Wt) exp
(

∫ t

0

c(x + Ws)ds
)

)

then w(x, t) satisfies diffusive equation with an exponential growth term:

(25)
∂w

∂t
=

1

2

∂2w

∂x2
+ c(x)w w(x, 0) = f(x) .

Addendum: The law of large numbers and the central limit theorem

Let {Xj}j∈N be a sequence of i.i.d. (independent, identically distributed) ran-
dom variables, let η = EX1 σ2 = var(X1) = E(Z1 − η)2 and define

Sn =
n

∑

j=1

Xj

The (weak) law of large numbers states that if E|Xj | < ∞, then

Sn

n
→ η in probability.

The central limit theorem states that if EX2
j < ∞ then

Sn − nη√
nσ2

→ N(0, 1) in distribution.

We first give a proof of the law of large numbers under the stronger assumption
that E|Xj |2 < ∞. Without loss of generality we can assume that η = 0. The proof
is based the Chebychev inequality: Suppose X is a random variable with distribution
function F (x) = P(X < x). Then, for any λ > 0,

(26) P(|X | ≥ λ) ≤ 1

λp
E|X |p.

Indeed:

λp
P(|X | ≥ λ) = λp

∫

|x|≥λ

dF (x) ≤
∫

|x|≥λ

|x|pdF (x) ≤
∫

R

|x|pdF (x) = E|X |p.

Using Chebychev’s inequality, we have

P

{
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

}

≤ 1

ε2
E

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

2

for any ε > 0. Using the i.i.d. property, this gives

E|Sn|2 = E|X1 + X2 + . . . + Xn|2 = nE|X1|2.
Hence

P

{∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

}

≤ 1

nε2
E|X1|2 → 0,

as n → ∞, and this proves the law of large numbers.
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Next we prove the central limit theorem. Let f be the characteristic function

of X1, i.e.

(27) f(k) ≡ EeikX1 , k ∈ R.

and similarly let gn be the characteristic function of Sn/
√

nσ2. Then

gn(ξ) = EeiξSn/
√

nσ2

=
n

∏

j=1

EeiξXj/
√

nσ2

=
(

EeiξXj /
√

nσ2
)n

=

(

1 +
ik√
nσ

EX1 −
k2

2nσ2
EX2

1 + o(N−1)

)n

=

(

1 − k2

2n
+ o(N−1)

)n

→ e−k2/2 as n → ∞.

This shows that the characteristic function of Sn/
√

nσ2 converges to the the char-
acteristic function of N(0, 1) as n → ∞ and terminates the proof.

It is instructive to note that the only property of X1 that we have required in
the central limit theorem is that EX2

1 < ∞. In particular, the theorem holds even
if the higher moments of X1 are infinite! For one illustration of this, consider a
random variable having probability density function

(28) ρ(x) =
2

π(1 + x2)2
,

for which no higher order moment than the variance can be computed. Nevertheless,
we have:

f(k) ≡
∫

R

eikxρ(x)dx = (1 + |k|) e−|k|

= 1 − 1
2k2 + o(k2),

although the characteristic function is not three times differentiable at k = 0, so
the Taylor series can not be extended beyond second order terms.
Notes by Marcus Roper and Ravi Srinivasan.





CHAPTER 8

Stochastic integrals and stochastic differential

equations

From (1) and (2) WN
tn

, where tn = n/N , satisfies the recurrence relation

(29) WN
tn

= WN
tn

+ ξn+1

√
∆t.

where ∆t = 1/N and {ξn}n∈N are i.i.d. random variables taking values ±1 with
probability 1

2 as before A natural generalization of this relation (29) is

(30) XN
tn+1

= XN
tn

+ b(XN
tn

, tn)∆t + σ(XN
tn

, tn)ξn+1

√
∆t, X0 = x

If the last term were absent, this would be the forward Euler scheme for the ODE
Ẋt = b(Xt, t). If σ(x, t) meets appropriate regularity requirements, it can be shown
that XN

t converges to a stochastic process Xt as N → ∞ (i.e. as ∆t → 0 with
n∆t → t). The limiting equation for Xt is denoted as the stochastic differential

equation (SDE)

(31) dXt = b(Xt, t)dt + σ(Xt, t)dWt, X0 = x,

as a remainder that the last term in (30) divided by ∆t does not have a standard
function as limit. The notation dWt comes from (29) since this equation can be

written as WN
tn+1

− WN
tn

= ξn+1

√
∆t. We note that the convergence of XN

t to
Xt holds provided only that the ξn’s are i.i.d. random variables with mean zero,
Eξn = 0, and variance one, Eξ2

n = 1. The standard choice in numerical schemes is
to take ξn = N(0, 1), in which case

√
∆t ξn+1

d
= Wtn+1

− Wtn
.

In the discussion below, however, we will stick to the choice where {ξn}n∈N are
i.i.d. random variables taking values ±1 with probability 1

2 since it facilitates the
calculations.

Next, we study the properties of Xt solution of (31) and introduce some non-
standard calculus due to Itô to manipulate this solution.

1. Itô isometry and Itô formula

Consider the recurrence relation

XN
tn+1

= XN
tn

+ f(WN
tn

)ξn+1

√
∆t,

Let us investigate the properties of the limit of XN
n∆t as N → ∞, assuming that

this limit exists. The limiting form of the recurrence relation above is traditionally
denoted as

dXt = f(Wt, t)dWt, X0 = 0,

9
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which can also be expressed as the stochastic integral

Xt =

∫ t

0

f(Ws, s)dWs.

Stochastic integral have special properties called Itô isometries

E

∫ t

0

f(Ws, s)dWs = 0,

E

(

∫ t

0

f(Ws, s)dWs

)2

=

∫ t

0

Ef2(Ws, s)ds.

The first Itô isometry is often written and used in differential form

Ef(Ws, s)dWs = 0.

The Itô isometries are easy to demonstrate. The first is implied by

EXN
tn

= E

n−1
∑

m=0

f(WN
tm

, tm)ξm+1

√
∆t

=

n−1
∑

m=0

Ef(WN
tm

, tm)Eξm+1

√
∆t = 0,

where we used the independence of the ξm’s and Eξm = 0. The second is implied
by

E(XN
tn

)2 = E

n
∑

m,p=0

f(WN
tm

, tm)f(W̄N
tp

, tp)ξm+1ξp+1∆t

=

n
∑

m=0

Ef2(WN
tm

, tm)∆t,

where we use the fact that ξm and ξp are independent unless m = p, and ξ2
m = 1

by definition.
Going back to (31), a very important formula to manipulate the solution of this

equation is Itô formula which states the following. Assume that Xt is the solution
of (31) and let f be a smooth function. Then f(Xt) satisfies the SDE

df(Xt) = f ′(Xt)dXt + 1
2f ′′(Xt)σ

2(Xt, t)dt

=
(

f ′(Xt)b(Xt, t) + 1
2f ′′(Xt)σ

2(Xt, t)
)

dt + f ′(Xt)σ(Xt, t)dWt.

If f depends explicitly on t, then an additional term ∂f/∂tdt is present at the
right hand-side. Itô formula is the analog of the chain rule in ordinary differential
calculus. However ordinary chain rule would give

df(Xt) = f ′(Xt)dXt.

Here because of the non-differentiability of Xt, we have the additional term that
depends on f ′′(x).
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The proof of Itô formula can be outlined as follows. We Taylor expand f(XN
Tn+1

)−
f(XN

tn
) using the recurrence relation (30) for XN

tn
and keep terms up to O(∆t):

f(XN
tn+1

) − f(XN
tn

)

= f ′(XN
tn

)(XN
tn+1

− XN
tn

) + 1
2f ′′(XN

tn
)(XN

tn+1
− XN

tn
)2 + · · ·

= f ′(XN
tn

)(XN
tn+1

− XN
tn

)

+ 1
2f ′′(XN

tn
)
(

b(XN
tn

, tn)∆t + σ(XN
tn

, tn)ξn+1

√
∆t

)2

+ O(∆t3/2)

= f ′(XN
tn

)(XN
tn+1

− XN
tn

) + 1
2f ′′(XN

tn
)σ2(XN

tn
, tn)ξ2

n+1∆t + O(∆t3/2).

The Itô formula follows in the limit as ∆t → 0 because

1
2f ′′(XN

tn
)σ2(XN

tn
, tn)ξ2

n+1∆t → 1
2f ′′(Xt)σ

2(Xt, t)dt.

since ξ2
n = 1 by definition, and the higher order terms in the expansion gives no

contribution in the limit as ∆t → 0.

2. Examples

The Itô isometries and the Itô formula are the backbone of the Itô calculus

which we now use to compute some stochastic integrals and solve some SDEs. As
an example of stochastic integral, consider

∫ t

0

WsdWs.

Taking f(x) = x2 in Itô formula gives

1
2dW 2

t = WtdWt + 1
2dt.

Therefore
∫ t

0

WsdWs = 1
2W 2

t − 1
2 t.

Notice that the second term at the right hand-side would be absent by the rules
of standard calculus. Yet, this term must be present for consistency, since the
expectation of the left hand-side is

E

∫ t

0

WsdWs = 0,

using the first Itô isometry, and the expectation of the right hand-side is zero only
with the term 1

2 t included since 1
2EW 2

t = 1
2 t.

As a first example of SDE, consider

dXt = −γXtdt + σdWt, X0 = x

This is the Ornstein-Uhlenbeck process. Using Itô formula with f(x, t) = eγtx, we
get (this is Duhammel principle)

d
(

eγtXt

)

= γeγtXtdt + eγtdXt = σeγtdWt.

Integrating gives

Xt = e−γtx + σ

∫ t

0

e−γ(t−s)dWs.
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Figure 1. Three realizations of the Ornstein-Uhlenbeck process
with X0 = 0 and γ = σ = 1.

This process is Gaussian being a linear combination of the Gaussian process Wt.
Its mean and variance are (using the Itô isometries)

EXt = e−γtx

E(Xt − EXt)
2 = σ2

∫ t

0

(e−γ(t−s))2ds =
σ2

2γ
(1 − e−2γt).

Thus when γ > 0

Xt
d→ N

(

0,
σ2

2γ

)

,

as t → ∞.
As a second example of SDE, consider

dYt = Ytdt + αYtdWt, Y0 = y.

Itô’s formula with f(x) = log x gives

d log Yt =
1

Yt
(Ytdt + αYtdWt) −

1

2Y 2
t

α2Y 2
t dt.

Integrating we get

Yt = yet−1
2α2t+αWt .

Note that by the rules of standard calculus, we would have obtained the wrong
answer

Yt = yet+αWt .

Indeed the term − 1
2α2t in the exponential is important for consistency since taking

the expectation of the SDE for Yt using the first Itô isometry gives

dEYt = EYtdt,
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and hence
EYt = yet.

The solution above is consistent with this since (can you show this?)

EeαWt = e
1
2
α2t.

3. Generalization in multi-dimension

The definition of Itô integrals and SDE’s can be extended to multi-dimension
in a straightforward fashion. The SDE

dXj
t = bj(Xt, t)dt +

K
∑

k=1

σjk(Xt, t)dW k
t , j = 1, . . . , J

where {W k
t }K

k=1 are independent Wiener processes, defines a vector-valued stochas-
tic process Xt = (X1

t , . . . , XJ
t ). The only point worth noting is the Itô formula,

which in multi-dimension reads:

df(Xt) =
J

∑

j=1

∂

∂xj

f(Xt)dXj
t + 1

2

J
∑

j,j′=1

∂2f

∂xj∂xj′
(Xt)

(

K
∑

k=1

σjk(Xt, t)σkj′ (Xt, t)
)

dt

4. Forward and Backward Kolmogorov equations

Consider the stochastic ODE

dXt = b(Xt)dt + σ(Xt)dWt, X0 = y.

Define the transition probability density ρ(x, t|y) via
∫

B

ρ(x, t|y)dx = P{Xt+s ∈ B|Xs = y}.

(ρ(x, t|y) does not depends on s because b(x) and σ(x) are time-independent, in
which case the process Xt is stationary.) We will derive equation for ρ. Let f be
an arbitrary smooth function. Using Itô formula, we have

f(Xt) − f(y) =

∫ t

0

f ′(Xs)dXs + 1
2

∫ t

0

f ′′(Xs)a(Xs)ds,

where a(x) = σ2(x). Taking expectation on both sides, we get

Ef(Xt) − f(y) = E

∫ t

0

f ′(Xs)b(Xs)ds + 1
2E

∫ t

0

f ′′(Xs)(Xs)ds.

or equivalently using ρ
∫

R

f(x)ρ(x, t|y)dx − f(y)

=

∫ t

0

∫

R

f ′(x)b(x)ρ(x, s|y)dxds + 1
2

∫ t

0

∫

R

f ′′(x)a(x)ρ(x, s|y)dxds.

Since this holds for all smooth f , we obtain

(32)
∂ρ

∂t
= − ∂

∂x
(b(x)ρ) + 1

2

∂2

∂x2
(a(x)ρ)

with the initial condition limt→0 ρ(x, t|y) = δ(x−y). This is the forward Kolmogorov

equation for ρ in terms of the variables (x, t). It is also called the Fokker-Planck

equation.
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Equivalently, an equation for ρ in terms of the variables (y, t) can be derived.
The Markov property implies that

ρ(x, t + s|y) =

∫

R

ρ(x, t|z)ρ(z, s|y)dz.

Hence

ρ(x, t + ∆t|y) − ρ(x, t|y) =

∫

R

ρ(x, t|z)ρ(z,∆t|y)dz − ρ(x, t|y)

=

∫

R

ρ(x, t|z)
(

ρ(z,∆t|y) − δ(z − y)
)

dz.

Dividing both side by ∆t and taking the limit as ∆t → 0 using the forward Kol-
mogorov equation one obtains

∂ρ

∂t
=

∫

R

ρ(x, t|z)
(

− ∂

∂z
(b(z)δ(z − y)) + 1

2

∂2

∂z2
(a(z)δ(z − y))

)

dz,

which by integration by parts gives

(33)
∂ρ

∂t
= b(y)

∂ρ

∂y
+ 1

2a(y)
∂2ρ

∂y2
.

This is the backward Kolmogorov equation for ρ in terms of the variables (x, t). The
operator

L = b(y)
∂

∂y
+ 1

2a(y)
∂2

∂y2
,

is called the infinitesimal generator of the process. The coefficient b and a can be
expressed as (can you show this from the SDE?)

b(y) = lim
t→0

1

t
(EXt − y), a(y) = lim

t→0

1

t
E(Xt − y)2.

Both the forward and the backward equations can be considered with different
initial conditions. In particular, given a smooth function f , if we define

u(y, t) = Ef(Xt),

then u(y, t) =
∫

R
f(x)ρ(x, t|y) and hence it satisfies

∂u

∂t
= b(y)

∂u

∂y
+ 1

2a(y)
∂2u

∂y2
,

with the initial condition u(y, 0) = f(y). Thus, the SDE for Xt is the characteristic
equation that is associated with this parabolic PDE, much in the same way as the
ODE Ẋt = b(Xt) is the characteristic equation associated with the first order PDE
∂u/∂t = b(y)∂u/∂y. This can be generalized in many ways. For instance, the
solution of

∂v

∂t
= c(y)v(y) + b(y)

∂v

∂y
+ 1

2a(y)
∂2v

∂y2
.

with the initial condition v(y, 0) = f(y), can be expressed as

v(y, t) = Ef(Xt)e
R

t

0
c(Xs)ds.

This is the celebrated Feynman-Kac formula in the context of SDEs.
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Figure 2. Snapshots of the density of the Ornstein-Uhlenbeck
process at time t = 0.01 (blue), t = 0.1 (red), t = 1 (green), and
t = 10 (magenta). Here X0 = y = 1 and γ = σ = 1. The last
snapshot at t = 10 is very close to the equilibrium density.

Let us consider an example. The forward differential equation associated with
the Ornstein-Uhlenbeck process introduced in the last section is

∂ρ

∂t
= γ

∂

∂x
(xρ) +

σ2

2

∂2ρ

∂x2

The solution of this equation is

ρ(x, t|y) =
1

√

πσ2(1 − e−2γt)/γ
exp

(

−γ(x − ye−γt)2

σ2(1 − e−2γt)

)

.

This shows that the Ornstein-Uhlenbeck process is a Gaussian process with mean
ye−γt and variance σ2(1 − e−2γt)/2γ. It also confirms that this process tends to
N(0, σ2/2γ) as t → ∞ since

ρ(x) = lim
t→∞

ρ(x, t|y) =
e−γx2/σ2

√

πσ2/γ
.

Generally, the limit of ρ(x, t|y) as t → ∞, when it exists, gives the equilibrium
density ρ of the process. It satisfies

0 = − ∂

∂x
(b(x)ρ) + 1

2

∂2

∂x2
(a(x)ρ).

Forward and backward Kolmogorov equations can also be derived for multi-
dimensional processes. They read respectively

∂ρ

∂t
= −

J
∑

j=1

∂

∂xj

(bj(x)ρ) + 1
2

J
∑

j,j′=1

∂2

∂xi∂xj
(ajj′ (x)ρ)
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and

∂ρ

∂t
=

J
∑

j=1

bj(x)
∂ρ

∂xj

+ 1
2

J
∑

j,j′=1

ajj′ (x)
∂2ρ

∂xi∂xj
,

where ajj′ (x) =
∑K

k=1 σjk(x)σj′k(x).
Notes by Walter Pauls and Arghir Dani Zarnescu.



CHAPTER 9

Asymptotic techniques for SDEs

Here we discuss techniques by which one can study SDEs evolving on very
different time-scales and derive closed equations for the slow variables.

1. The case of stiff ordinary differential equations

We start with an ODE example. Consider

(34)







Ẋt = −Y 3
t + sin(πt) + cos(

√
2πt) X0 = x

Ẏt = −1

ε
(Yt − Xt) Y0 = y.

If ε is very small, Yt is very fast and one expects that it will adjust rapidly to the
current value of Xt, i.e. Yt = Xt + O(ε) at all times. Then the equation for Xt

reduces to

(35) Ẋt = −X3
t .

The solutions of (34) and (35) are compared in figure 1.
Here is a formal derivation of the limiting equation (35) which uses the back-

ward Kolmogorov equation. For simplicity we drop the term sin(πt) + cos(
√

2πt).
Generalizing the derivation below with this term included is easy but requires a
slightly different backward equation because (35) is non-autonomous. Let f be a
smooth function and consider

u(x, y, t) = f(Xt).

(This function depends on both x and y since Xt depends on both these variable
because Xt and Yt are coupled in (34), and there is no expectation since (34) is
deterministic.) The backward equation is

∂u

∂t
= Lxu +

1

ε
Lyu,

where

Lx = −y
∂

∂x
, Ly = −(y − x)

∂

∂y
.

Look for a solution of the form u = u0 + εu1 + O(ε2), so that u → u0 as ε → 0.
Inserting this expansion into the backward equation, and grouping terms of same
order in ε, one obtains

(36)

Lyu0 = 0,

Lyu1 =
∂u0

∂t
− Lxu0,

and so on. The first equation tells that u0 belong to the null-space of Ly, i.e.
u0 = u0(x, t). The second equation requires as a solvability condition that the
right hand-side belongs to the range of Ly. To see what this condition actually is,

17
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Figure 1. The solution of (34) when ε = 0.05 and we took
X0 = 2, Y0 = −1. Xt is shown in blue, and Yt in green. Also
shown in red is the solution of the limiting equation (35).

multiply the second equation in (36) by a test function ρ(y), and integrate both
sides over R. After integration by part at the left hand-side, this gives

∫

R

L⋆
yρ(y)u1dy =

∫

R

ρ(y)
(∂u0

∂t
− Lxu0

)

dy.

where L⋆
y is the adjoint of Ly viewed as an operator in y at fixed x, i.e.

L⋆
yρ(y) =

∂

∂y
((y − x)ρ(y)).

Choosing ρ(y) such that

(37) 0 = L⋆
yρ(y),

one concludes that the solvability of (36) requires that

(38) 0 =

∫

R

ρ(y)
(∂u0

∂t
− Lxu0

)

dy.

It can be shown that this equation is also sufficient for the solvability of (36) –
the calculation above actually tells the range of Ly is the space perpendicular to
the null-space of the adjoint of Ly. Now, (37) is simply the forward Kolmogorov
equation for the equilibrium density of the process Yt at fixed Xt = x. Here the
equilibrium density is a generalized function

ρ(y|x) = δ(y − x).

Using this ρ(y|x), the solvability condition (38) becomes

0 =
∂u0

∂t
+ x

∂u0

∂x
,
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which is the backward equation for

Ẋt = −X3
t , X0 = x.

A similar argument with the term sin(πt)+ cos(
√

2πt) included gives the backward
equation for (35).

2. Generalization to stochastic differential equation

The derivation that lead to (35) can be generalized to SDEs. Consider

(39)











dXt = f(Xt, Yt)dt, X0 = x

dYt =
1

ε
b(Xt, Yt)dt +

1√
ε
σ(Xt, Yt)dt, Y0 = y,

and assume that the equation for Yt at Xt = x fixed has an equilibrium density
ρ(y|x) for every x. Then going through a derivation as above with

u(x, y, t) = Ef(Xt),

one concludes that the backward equation associated with this SDE also reduces
to (38) as ε → 0, i.e.

∂u0

∂t
= F (x)

∂u0

∂x
,

where

F (x) =

∫

R

f(x, y)ρ(y|x)dy.

Thus the limiting equation for Xt is

Ẋt = F (Xt), X0 = 0.

The main difference with the deterministic example treated before is that the fast
process Yt does not rapidly settle to an equilibrium point depending on the current
value of Xt – only its density does.

Here is an example generalizing (34). Consider

(40)







dXt = −Y 3
t dt + sin(πt) + cos(

√
2πt), X0 = x

dYt = −1

ε
(Yt − Xt)dt +

α√
ε
dWt, Y0 = y.

The equation for Yt at fixed Xt = x defines an Ornstein-Uhlenbeck process whose
equilibrium density is

ρ(y|x) =
e−(y−x)2/α2

√
πα

.

Therefore

F (x) = −
∫

R

y3 e−(y−x)2/α2

√
πα

dy = −x3 − 3
2α2x,

and the limiting equation is

(41) Ẋt = −X3
t − 3

2α2Xt + sin(πt) + cos(
√

2πt), X0 = x.

Note the new term − 3
2α2Xt, due to the noise in (40). The solution of (40) and (41)

are shown in figure 2.
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Figure 2. The solution of (40) with X0 = 2, Y0 = −1 when
ε = 10−3 and α = 1. Xt is shown in blue, and Yt in green. Also
shown in red is the solution of the limiting equation (41). Notice
how noisy Yt is.

3. Strong convergence and the property of self-averaging

The derivation in section 2 only give weak convergence, or convergence in dis-
tribution. But stronger results can be obtained. Consider a system of the form

(42) Ẋε
t = f(Xε

t , Yt/ε),

where Yt is a given stochastic process. Assume that Yt is ergodic, in the sense that
for any fixed x,

(43) lim
T→∞

1

T

∫ T

0

f(x, Ys)ds = f̄(x).

Then we can show that, as ε → 0, Xε
t converges strongly to the solution of

(44) ˙̄Xt = f̄(X̄t)

To see this, consider the integral form of (42):

(45) Xε
t+∆t − Xε

t =

∫ t+∆t

t

f(Xs, Ys/ε)ds.

We rewrite this equation in a way that allows us to exploit the self-averaging prop-
erty (43).

(46) Xε
t+∆t − Xε

t =

∫ t+∆t

t

f(Xt, Ys/ε)ds +

∫ t+∆t

t

(

f(Xs, Ys/ε) − f(Xt, Ys/ε)
)

ds.

We will consider the behavior of these two integrals as ε → 0 separately.
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Using (43), the first integral

(47)

∫ t+∆t

t

f(Xt, Ys/ε)ds = ε

∫ (t+∆t)/ε

t/ε

f(Xt, Ys)ds → ∆tf̄(Xt),

as ε → 0. To investigate the contribution of the second integral, let

(48) A(t,∆t, ε) =

∫ t+∆t

t

(

f(Xs, Ys/ε) − f(Xt, Ys/ε)
)

ds.

We then have

(49) |A(t,∆t, ε)| ≤
∫ t+∆t

t

∣

∣f(Xs, Ys/ε) − f(Xt, Ys/ε)
∣

∣ ds.

Assuming f is uniformly Lipschitz in Yt with constant K, we then write

|A(t,∆t, ε)| ≤
∫ t+∆t

t

K |Xs − Xt| ds

≤
∫ t+∆t

t

K
∣

∣

∣
Xs − Xt −

∫ s

t

f(Xt, Ys′/ε)ds′
∣

∣

∣

+

∫ t+∆t

t

K
∣

∣

∣

∫ s

t

f(Xt, Ys′/ε)ds′
∣

∣

∣
ds

It is straightforward to show using (47) that, for sufficiently small ε,

(50)

∫ t+∆t

t

K
∣

∣

∣

∫ s

t

f(Xt, Ys′/ε)ds′
∣

∣

∣
ds < C∆t2

for some constant C < ∞. Gronwall’s lemma then implies that

(51)

∣

∣

∣
Xt+∆t − Xt −

∫ t+∆t

t

f(Xt, Ys/ε)ds
∣

∣

∣
= |A(t,∆t, ε)|

≤ C∆t2 expK∆t = o(∆t).

This shown that

(52) lim
ε→0

(

Xε
t+∆t − Xε

t

)

= ∆tf̄(Xε
t ) + o(∆t).

which is sufficient to demonstrate that Xε
t converges strongly to X̄t.

4. Diffusive time-scale

An interesting generalization of the situation presented in section 2 arises when

(53)

∫

R

f(x, y)ρ(y|x)dy = 0.

In this case the limiting equation reduces to the trivial ODE, Ẋt = 0, i.e. no
evolution at all. In fact, the interesting evolution then occurs on a longer time-
scale of order ε−1, and the right scaling to study (39) is

(54)











dXt =
1

ε
f(Xt, Yt)dt, X0 = x

dYt =
1

ε2
b(Xt, Yt)dt +

1

ε
σ(Xt, Yt)dt, Y0 = y,
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To obtain the limiting equation for Xt as ε → 0, we proceed as above and consider
the backward equation for u(x, y, t) = Ef(Xt), which is now rescaled as

∂u

∂t
=

1

ε
Lxu +

1

ε2
Lyu.

Inserting the expansion u = u0 + εu1 + ε2u2 + O(ε2) (we will have to go one order
in ε higher than before) in this equation now gives

(55)

Lyu0 = 0,

Lyu1 = −Lxu0,

Lyu2 =
∂u0

∂t
− Lxu1,

and so on. The first equation tells that u0(x, y, t) = u0(x, t). The solvability
condition for the second equation is satisfied by assumption because of (53) and
therefore this equation can be formally solved as

u1 = −L−1
y Lxu0.

Inserting this expression in the third equation in (55) and considering the solvability
condition for this equation, we obtain the limiting equation for u0:

∂u0

∂t
= L̄xu0,

where

L̄x =

∫

R

dyρ(y|x)LxL−1
y Lx.

To see what this equation is explicitly, notice that −L−1
y g(y) is the steady state

solution of
∂v

∂t
= Lyv + g(y).

The solution of this equation with the initial condition v(y, 0) = 0 can be repre-
sented by Feynman-Kac formula as

v(y, t) = E

∫ t

0

g(Y x
s )ds,

where Y x
t denotes the solution of the second SDE in (54) at Xt = x fixed and ε = 1,

i.e.

dY x
t = b(x, Y x

t )dt + σ(x, Y x
t )dWt, Y x

0 = y.

Therefore

−L−1
y g(y) = E

∫ ∞

0

g(Y x
t )dt,

and the limiting backward equation above can be written as

∂u0

∂t
= E

∫ ∞

0

dt

∫

R

dyρ(y|x)f(x, y)
∂

∂x

(

f(x, Y x
t )

∂u0

∂x

)

,

This is the backward equation of the SDE

dXt = b̄(Xt)dt + σ̄(Xt)dWt, X0 = x,
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where

b̄(x) = E

∫ ∞

0

∫

R

ρ(y|x)f(x, y)
∂

∂x
f(x, Y x

t )dydt,

σ̄2(x) = 2E

∫ ∞

0

∫

R

ρ(y|x)f(x, y)f(x, Y x
t )dydt.

The interesting new phenomena is that the limiting equation for Xt has become
an SDE. This means that fluctuations are important on the long-time scale and
give rise to stochastic effects in the evolution of Xt that were absent on the shorter
time-scale.

The calculation above is easy to generalize if there is a slow term in the original
equation for Xt, i.e. if instead of (54) one considers











dXt = g(Xt, Yt)dt +
1

ε
f(Xt, Yt)dt, X0 = x

dYt =
1

ε2
b(Xt, Yt)dt +

1

ε
σ(Xt, Yt)dt, Y0 = y,

The limiting equation for Xt is then

dXt = G(Xt)dt + b̄(Xt)dt + σ̄(Xt)dWt, X0 = x,

with b̄(x) and σ̄(x) as above, and

G(x) =

∫

R

ρ(y|x)g(x, y)dy.

It is also straightforward to generalize to higher dimensions.
Here is an example.























dXt =
2α

ε
YtZtdt − (Xt + X3

t )dt,

dYt =
3α

ε
ZtXtdt − 1

ε2
Ytdt +

1

ε
dW y

t ,

dZt = −α

ε
b3YtXtdt − 1

ε2
Ztdt +

1

ε
dW z

t .

where W y
t , W z

t are independent Wiener processes and α is a parameter. There
are two fast variables, Yt and Zt, in this example. There is also a slow term,
−(Xt +X3

t )dt, in the equation for Xt which, in the absence of coupling with Yt and
Zt, would drive Xt to the position x = 0. We ask to what extend this equilibrium
of the uncoupled dynamics is relevant with coupling with Yt and Zt.

The limiting equation for Xt is

dXt = ((α2 − 1)Xt − X3
t )dt + αdWt.

The equilibrium density for this equation is

ρ(x) = Z−1e
1
2
(α2−1)x2− 1

4
x4

.

This density is shown in figure 3. For |α| ≤ 1, ρ(x) is mono-modal and centered
around x = 0, the stable equilibrium of the uncoupled dynamics. However, for
|α| > 1, ρ(x) becomes bi-modal, with two maxima at x = ±

√
α2 − 1 and a minimum

at x = 0. Thus coupling with the fast modes may destroy the structures apparent
in the uncoupled dynamics and induce bifurcations.
Notes by Inga Koszalka and Alex Hasha.
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Figure 3. The equilibrium density ρ(x) = Z−1e
1
2
(α2−1)x2− 1

4
x4

for α = 1
2 (blue) and α = 2 (red).


