Homework 1 (due Feb. 11 at midnight)

Note: the percentages are with respect to the total for this homework.

1. [5%] Compute the polynomial interpolant \(Q_2(x) \) of degree \(\leq 2 \) that satisfies \(Q_2(0) = 0, Q_2(1) = 1, Q_2(2) = 0 \).

2. [5%] Find the polynomial interpolant \(Q_3(x) \) of degree \(\leq 3 \) that agrees with \(\sqrt{x} \) at 0, 1, 3, 4. Compare the approximation \(Q_3(2) \) with \(\sqrt{2} \approx 1.414216 \).

3. [10%] Suppose that we are interpolating a function on \([0, 1]\) by using only two points \(x_0, x_1 \). Directly and explicitly show (that is, without resorting to the proven properties of Chebyshev points) how to choose \(x_0 \) and \(x_1 \) so that the term \((x - x_0)(x - x_1)\) in the error estimate is minimized.

4. [5%] Let \(V_n \) be the Vandermonde matrix for the points \(x_0, \ldots, x_n \). Show that \(\det V_1 = x_1 - x_0 \), \(\det V_2 = (x_1 - x_0)(x_2 - x_1)(x_2 - x_0) \).

5. [5%] Provide an upper bound for the error when approximating \(f(x) = \cosh(x) \) by polynomial interpolation at the points

\[
x_i = -1 + \frac{i}{2}, \quad i = 0, \ldots, 4.
\]

6. [10%] Show that the Lagrange polynomials satisfy, for any \(n \geq 1 \),

\[
\sum_{i=0}^{n} \ell_i^n(x) = 1 \quad \forall x.
\]

7. [25%] Approximate the function \(f(x) = (1 + 25x^2)^{-1} \) in \(x \in [-1, 1] \) through polynomial interpolation using:

- Equally spaced points in \([-1, 1]\): \(x_i = -1 + (2i)/n \), \(i = 0, 1, \ldots, n \), for \(n = 3, 9, 15, 21 \).
- Chebyshev points (with \(n = 3, 9, 15, 21 \) as before).

Plot the error function \(|f(x) - Q_n(x)|\) versus \(x \) for each value of \(n \) and comment on the difference(s) between the two approaches. Explain the root of the observed behavior.

In both cases (equally spaced and Chebyshev points) plot, using a fine mesh of \(x \) points (say, 1,000 of them) \(\max_{x \in [-1, 1]} |f(x) - Q_n(x)| \) versus \(n \). Discuss the results.

8. [15%] For a fine sample of, say, 1,000 \(x \)-points, plot (versus \(n \)) the maximum of the absolute value of the nodal polynomial

\[
\omega_{n+1}(x) = (x - x_0) \ldots (x - x_n)
\]

in \(x \in [-1, 1] \),

\[
\max_{x \in [-1, 1]} |\omega_n(x)|
\]

when using \((n+1)\) equally spaced node points \(\{x_0, x_1, \ldots, x_n\} \) and when using \((n+1)\) Chebyshev ones. Compare to the theoretical expected results and discuss.

9. [10%] Prove that the Hermite interpolant is unique.
10. [10%] Prove that the error for the Hermite interpolant \(p(x) \) of a function \(f(x) \) at node points \(\{x_0, x_1, \ldots, x_n\} \) satisfies

\[
f(x) - p(x) = \frac{1}{(2n+2)!} f^{(2n+2)}(\xi) \prod_{i=0}^{n} (x - x_i)^2
\]

for some \(\xi \), where \(f^{(j)} \) denotes the \(j \)-th derivative,

\[
f^{(j)} := \frac{d^j}{dx^j} f(x).
\]