Homework 6 (due April 11 at noon)

1. [30%] Consider the matrix

\[
A = \begin{pmatrix}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{pmatrix}
\]

Using “pencil and paper”:

(a) Solve the system \(Ax = b \), for an arbitrary \(b \) vector, using Gaussian elimination.
(b) Use the multipliers from the previous item to compute the LU decomposition of \(A \). Check that the product of \(L \) times \(U \) does give \(A \) as expected.

Note: present/sketch the intermediate steps rather than only the final results.

2. [10%] Compute the \(L_1 \), \(L_2 \) and \(L_\infty \) norms of the following vector and matrix, respectively,

\[
\begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

3. [30%] Consider a linear system of equations \(Ax = b \)

where, as usual, \(A \) and \(b \) are known and \(x \) is the unknown. Suppose now that \(b \) changes

\[b \to b + \delta b \]

Show that the condition number of the problem can be bounded by the condition number of \(A \), the latter defined as

\[t\kappa(A) = ||A||||A^{-1}|| \]

4. [30%] Residuals and ill-conditioning. Suppose that \(\tilde{x} \) is an approximant to the solution of a system \(Ax = b \).

One way to try to quantify the accuracy of \(\tilde{x} \) would be by computing the residual vector,

\[r := b - A\tilde{x} \]

If \(\tilde{x} = x \) then the residual would be zero. Thus, we would expect \(r \) to be small if \(\tilde{x} \) were a good approximation to \(x \), and vice versa. This is true in some cases but the magnitude of \(r \) can be misleading if \(A \) is ill-conditioned.

Consider the system of equations

\[
\begin{align*}
0.780x_1 + 0.563x_2 &= 0.217 \\
0.913x_1 + 0.659x_2 &= 0.254
\end{align*}
\]

and two (very different!) approximate solutions,

\[
\begin{align*}
\tilde{x}_1 &= \begin{pmatrix} 0.341 \\ -0.087 \end{pmatrix}, & \tilde{x}_2 &= \begin{pmatrix} 0.999 \\ -1.001 \end{pmatrix}
\end{align*}
\]

First, verify that the exact solution is

\[
x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

Next, compute the residuals associated with \(\tilde{x}_1 \) and \(\tilde{x}_2 \). Notice that based on them you would expect \(\tilde{x}_1 \) to be a better approximation to \(x \), while it is the other way around.