Homework 7

1. Show that the number of operations in Gaussian elimination for a generic \(n \times n \) matrix is, for large \(n \), of order \(O(n^3) \).

2. Consider the matrix

\[
A = \begin{pmatrix}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{pmatrix}
\]

Using "pencil and paper" (as opposed to Problem 4):

(a) Solve the system \(Ax = b \), for an arbitrary \(b \) vector, using Gaussian elimination.

(b) Use the multipliers from the previous item to compute the LU decomposition of \(A \). Check that the product of \(L \) times \(U \) does give \(A \) as expected.

Note: present/sketch the intermediate steps rather than only the final results.

3. We have seen that Gaussian elimination yields a factorization \(A = LU \), where \(L \) has ones in the diagonal but \(U \) in general does not. Describe at a high level the factorization that results if this process is varied in the following ways:

(a) Elimination by columns from left to right, rather than by rows from top to bottom, so that \(A \) is made lower-triangular.

(b) Gaussian elimination applied after a preliminary scaling of the columns of \(A \) by a diagonal matrix \(D \). What form does a system \(Ax = b \) take under this rescaling? Is it the equations or the unknowns that are rescaled by \(D \)?

(c) Gaussian elimination carried further, so that after \(A \) (assumed non-singular) is brought to upper-triangular form, additional column operations are carried out so that this upper triangular matrix is made diagonal.

4. Write a program that solves \(Ax = b \) through Gaussian elimination, for:

(a) \(A \) the matrix of Problem 2, and \(b = (1, 7, 5, 2) \). Compare with the "pencil and paper" solution from Problem 2.

(b) \(A \) an \(n \times n \) matrix with coefficients \(a_{ij} = i^{j-1} \) and \(b_i = i \) for \(n = 7, 15, 50 \). From the numerical solution \(\tilde{x} \) compute \(A\tilde{x} \) and compare with the components of \(b \). Discuss.