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What is cloaking?

cloaked region can
have any shape

the cloaked region should be invisible

even the cloak itself should be invisible

our cloaks will be coatings with heterogeneous, anisotropic
dielectric properties

In what sense invisible?

this talk: Helmholtz at fixed frequency
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Outline

(1) Cloaking by change of variables

- The basic idea
- Approximate cloaks and inclusion problems

(2) Does it work?
- At frequency 0: yes
- At frequency 6= 0: problem due to resonance
- Resolution: damping

(3) How well does it work?
- 2D case (is 1/| log ρ| small?)
- 3D case (much better)

Change-of-variable scheme introduced by:
Greenleaf, Lassas, Uhlmann (2003, freq 0 = impedance tomography)
Pendry, Schurig, Smith (2006, finite freq = electromag scattering)

Just one approach to cloaking; others include
anomalous localized resonance (Milton, Nicorovici)
optical conformal mapping (Leonhardt)
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Basic definitions

X ∂

∂xi

�
Aij(x)

∂u
∂xj

�
+ω2q(x)u = 0 in Ω

Neumann-to-Dirichlet map characterizes “boundary measurements”
(invertible if ω2 is not an eigenvalue)

ΛA,q : (A∇u) · ν|∂Ω → u|∂Ω

Same DN map ⇔ same scattering data.

Cloaking in this setting: Ac(x) and qc(x), defined on Ω \ D, cloak D if
resulting bdry measurments “look uniform,” indep of content of D.

(A,q) = (1,1)

uniform case: Λ1,1

A(x), q(x) =

�
Ac(x), qc(x) for x ∈ Ω \ D
arbitrary for x ∈ D

,A c qc

arbitrary

same: ΛA,q = Λ1,1
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Getting used to the definitions

Scattering seeks knowledge of interior
properties, based on response to plane waves.

Exterior sees Ω only via Cauchy data (“bdry meas” or “DN map”).

We say Ac(x),qc(x) (defined in Ω \ D) cloaks D if the Cauchy data at
∂Ω are (a) indep of content of D, and (b) same as for uniform case
A = q = 1.

Name is apt, since extn of Ac ,qc by 1 to larger domain is also a cloak.

(A,q) = (1,1)

A c , qc

arbitrary

(A,q)=(1,1)
unif case: Λ1,1 same as unif case: ΛA,q = Λ1,1
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Invariance under change of variables

Basic observation: bdry meas determine
material properties at most “up to change
of variables.”

B
2

B
2

Bρ

1B

F

If F : Ω → Ω is invertible and F (x) = x on ∂Ω then A,q and F∗A,F∗q
produce the same boundary measurements, where

F∗A(y) =
1

det(DF )(x)
DF (x)A(x)(DF (x))T F∗q(y) =

1
det(DF )(x)

q(x)

with y = F (x).

Sketch: write PDE in weak form, then change variables.

weak form:
R

Ω
〈A∇x u,∇xφ〉 − ω2quφ dx = 0 if φ = 0 near ∂Ω

change vars:
R

Ω
〈F∗(A)∇y u,∇yφ〉 − ω2F∗(q)uφ dy = 0

F = id at bdry ⇒ chg of vars doesn’t affect bdry data
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The singular change-of-variable-based cloak

Radial version, for simplicity only:
domain is B2, cloaked region is B1.

B
2

1B

Choose properties of the cloak to be Ac = F∗1 and qc = F∗1, where
F “blows up” the origin to B1:

F (x) =
�
1 + 1

2 |x |
� x
|x |

B
2

B
2

1B

F

Formally B1 is cloaked. In fact, if

(A(y), q(y)) =

�
F∗(1, 1) for y ∈ B2 \ B1

arbitrary for y ∈ B1

we have, using F−1 as our change of variable,Z
B2

〈A(y)∇y u,∇yφ〉 − ω2q(y)uφ dy =

Z
B2

〈∇x u,∇xφ〉 − ω2uφ dx

since F−1 shrinks B1 (the region being cloaked) to a point.

Is this correct? F and F−1 are very singular.
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Remarks on the singular cloak

This scheme requires exotic materials. Recall that

(Ac(y), qc(y)) = F∗(1, 1)
at y = F (x) B

2
B

2

1B

F

where F blows up a point to the region being cloaked. The
material is anisotropic and singular: as |y | ↓ 1, Ac(y) has

radial eigenvector with eigenvalue ∼ (|y | − 1)n−1

tangential eigenspace with eigenvalue ∼ (|y | − 1)n−3,

and qc(y) ∼ (|y | − 1)2(n−1).

Analysis is possible, but requires suitable notion of “weak
solution” (Greenleaf, Kurylev, Lassas, Uhlmann, CMP 2008).

The singular cloak makes me uncomfortable. We usually deal
with singularities by smoothing them. Why not here?
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A regularized version
Same idea, with more regular F . Domain B2, cloaked region B1.

Approx cloak uses (Ac ,qc) = F∗(1,1), where F = Fρ is less singular:

F is cont’s and piecewise smooth
it expands Bρ to B1 while preserving B2

F (x) = x at the outer bdry |x | = 2. B
2

B
2

Bρ

1B

F

Impact of contents of B1 on bndry data becomes, via change of vars,
effect of small inclusion with uncontrolled properties. In fact, if

(A(y), q(y)) =

�
F∗(1, 1) for y ∈ B2 \ B1
AD(y), qD(y) for y ∈ B1

then, using F−1 as change of variable,
Z

B2

〈A(y)∇y u,∇yφ〉 − ω2q(y)uφ dy =

Z
B2\Bρ

〈∇x u,∇xφ〉 − ω2uφ dx+

Z
Bρ

〈F−1
∗ (AD)∇x u,∇xφ〉 − ω2F−1

∗ (qD)uφ dx .

Approximate cloaking ⇔ small inclusion with uncontrolled content
has little effect on bndry meas.
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Frequency 0 is OK
Singular cloak works at frequency 0 (Greenleaf, Lassas, Uhlmann 2003)

Explanation via regularization (Kohn, Shen, Vogelius, Weinstein 2008):

∇ · (A∇u) = 0 in Ω, ΛA = DN map

Theorem: If A ≡ 1 outside Bρ, then

‖ΛA − Λ1‖ ≤ Cρn in space dim n.

Use operator norm, ΛA : H−1/2(∂Ω) → H1/2(∂Ω). Natural
choice, since finite-energy solutions of ∇ · (A∇u) = 0 have
Dirichlet data in H1/2 and Neumann data in H−1/2.

Estimate is well-known when inclusion has constant conductivity
– even for the extreme cases, when A = 0 or A = ∞ in Bρ.

Variational principle implies that effect of any inclusion is
bracketed by effect of extreme inclusions.

So: our regularized scheme almost cloaks B1, if ρ is small.
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Finite frequency is different
Recall: approx cloaking achieved ⇔ small inclusion with uncontrolled
content has little effect on bndry meas.

But: at finite frequency a small inclusion can have huge effect, due to
resonance. Consider radial setting:

(A, q) =

�
(1, 1) in B2 \ Bρ

(Aρ, qρ) in Bρ

B
2

Bρ

Separate variables:

u =
X

αk Jk

�
ωr
p

qρ/Aρ

�
eikθ for r < ρ

u =
X�

βk Jk (ωr) + γk H(1)
k (ωr)

�
eikθ for ρ < r < 2

At freq k : 3 unknowns αk , βk , γk and 3 eqns:

1 eqn at r = 2 to match Neumann data
2 eqns at r = ρ to impose transmission bdry cond

Hence unique solution if eqns are not redundant. But eqns are
redundant at special Aρ, qρ (resonances).
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Similar issue for singular cloak

Greenleaf, Kurylev, Lassas, Uhlmann (CMP 2008) studied cloaking for 3D
Helmholtz by (singular) change of variables. Their conclusion: if

(A, q) =

�
F∗(1, 1) in Ω \ D
(AD, qD) in D

B
2

1B

then ∇ · (A∇u) + ω2qu = 0 exactly when

outside the cloaked region, u(y) = v(x) where y = F (x) and
∆v + ω2v = 0 in Ω.

inside the cloaked region, u solves given PDE with Neumann
data 0

Indicates cloaking (since v is indep of inclusion). But clearly
problematic if Neumann problem for cloaked region has a resonance.
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Resolution: include a lossy layer

Before mapping:
uncontrolled
inclusion of size ρ
coated by isotropic
lossy shell of width ρ
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After mapping:
uncontrolled
inclusion of size 1

2
coated by isotropic
lossy shell of width 1

2

A, q =

8<
:

(1, 1) for |x | > 2ρ
(1, 1 + iβ) for ρ < |x | < 2ρ
arbitrary for |x | < ρ

A, q =

8<
:

F∗(1, 1) for |y | > 1
F∗(1, 1 + iβ) for 1

2 < |y | < 1
arbitrary for |y | < 1

2

Successful ⇔ presence of inclusion has little effect on DN map,
regardless of inclusion contents.

Our results:

best choice of damping is β ∼ ρ−2

effect of inclusion is 1/| log ρ| in 2D,
√
ρ in 3D.

Suboptimal in 3D? Intuition and numerics suggest ρ not
√
ρ.
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Results for 2D Helmholtz

Claim: an arbitrary but small inclusion, coated by a lossy layer, has
little effect on bdry meas, if loss parameter is β ∼ ρ−2.

A, q =

�
(1, 1 + iρ−2) for ρ < |x | < 2ρ
arbitrary pos for |x | < ρ

Theorem. When embedded in a uniform medium (A = 1, q = 1), the
effect of such an inclusion is bounded by

‖ΛA,q − Λ1,1‖ ≤ Cω/| log ρ|.

LHS is operator norm from H−1/2 to H1/2 (natural norms for Neumann
and Dirichlet data of finite-energy solutions). If f =

∑
ak eikθ,

‖f‖2
H−1/2 =

X
|k |−1|ak |2, ‖f‖2

H1/2 =
X

|k ||ak |2.

Robert V. Kohn Courant Institute, NYU Near-cloaking by change of variables



3D is better

For 2D Helmholtz, cloaking error was C/| log ρ|.
Linked to fund soln of Laplacian.

For 3D Helmholtz, obvious guess is Cρ. Supported by numerics.
However our method gives only C

√
ρ: for

∇ · (A∇uρ) + ω2quρ = 0 in Ω ⊂ R3

with
A = 1,q = 1 in Ω \ B2ρ

A = 1,q = 1 + iρ−2 in B2ρ \ Bρ

arbitrary real, positive in Bρ.

we get

‖ΛA,q − Λ1,1‖ ≤ Cω
√
ρ.
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Overview of analysis
Recall eqn:

∇ · (A∇uρ) + ω2quρ = 0 in Ω

where 8<
:

A = 1, q = 1 in Ω \ B2ρ

A = 1, q = 1 + iβ in B2ρ \ Bρ

arbitrary real, positive in Bρ.

I. Compare Helmholtz in shell Ω \ B2ρ

to Helmholtz in Ω.

Show that inclusion has little effect on boundary measurements,
unless something wild is happening at ∂B2ρ.

II. Obtain global control using
lossiness of B2ρ \ Bρ.

Make good choice of lossiness (β ∼ ρ−2). Show that nothing wild can
happen at ∂B2ρ, regardless of content of Bρ.

Estimate holds even when lossless problem is resonant.
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Outline of step I

I. Compare Helmholtz in shell Ω \ B2ρ to Helmholtz in Ω.

Consider

∆u0 + ω2u0 = 0 in Ω

∆uρ + ω2uρ = 0 in Ω \ B2ρ

with same Neumann data ψ at ∂Ω, and Dir data φ for uρ at ∂B2ρ. Then

‖uρ − u0‖H1/2(∂Ω) ≤ Ce(ρ)
�
‖ψ‖H−1/2(∂Ω) + ‖φ(2ρ ·)‖H−1/2(∂B1)

�

where
e(ρ) =

�
1/| log ρ| in dim 2

ρ in dim 3.

Main idea: if behavior at inclusion edge is uniform, then effect is like a
small hole with a Dirichlet bdry condition.

If behavior at inclusion edge is oscillatory in θ, influence decays
faster.
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Outline of step II
II. Control uρ on ∂B2ρ, if annulus ρ < |x | < 2ρ is lossy. Let

∇ · (A∇uρ) + ω2quρ = 0 in Ω,

8<
:

A = 1, q = 1 for x ∈ Ω \ B2ρ

A = 1, q = 1 + iβ for ρ < |x | < 2ρ
any real, pos values for |x | < ρ.

using Neumann data ψ at ∂Ω. Then (in dim n)

‖uρ(2ρ ·)‖H−1/2(∂B1) ≤ C(1+(1+β)ρ2)
1

ρn/2
√
β

�
‖ψ‖H−1/2(∂Ω) + ‖uρ‖H1/2(∂Ω)

�

Main ideas:
1) Imaginary part of energy identity gives

ω2β

Z
B2ρ\Bρ

|uρ|2 ≤
�
‖ψ‖H−1/2(∂Ω) + ‖uρ‖H1/2(∂Ω)

�2

2) Elliptic estimate for ∆u + ω2(1 + iβ)u = 0 on B2ρ \ Bρ gives:

‖uρ(2ρ ·)‖2
H−1/2(∂B1) ≤ C(1 + (1 + β)ρ2)2ρ−n

Z
B2ρ\Bρ

|uρ|2
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Putting it together
Goal: compare solutions of

∆u0 + ω2u0 = 0 and ∇(A∇uρ) + ω2quρ = 0 in Ω

with same Neumann data ψ at ∂Ω.

Step 1 gave ‖uρ − u0‖H1/2(∂Ω) ≤ Ce(ρ)
�
‖ψ‖H−1/2(∂Ω) + ‖uρ(2ρ ·)‖H−1/2(∂B1)

�
.

Step 2 with β ∼ ρ−2 gives

‖uρ(2ρ ·)‖H−1/2(∂B1) ≤ Cρ1− n
2

�
‖ψ‖H−1/2(∂Ω) + ‖uρ‖H1/2(∂Ω)

�

Combining gives

‖uρ − u0‖H1/2(∂Ω) ≤ Ce(ρ)
�
ρ1− n

2 ‖ψ‖H−1/2(∂Ω) + ρ1− n
2 ‖uρ‖H1/2(∂Ω)

�

Eliminate last RHS term using ‖uρ‖ ≤ ‖uρ − u0‖ + ‖u0‖ to get

‖uρ − u0‖H1/2(∂Ω) ≤ Ce(ρ)ρ1− n
2 ‖ψ‖H−1/2(∂Ω)

Thus: perturbation of boundary operator is at most

≤ Ce(ρ)ρ1− n
2 =

{
C/| log ρ| n = 2

C
√
ρ n = 3
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Conclusions

How well does the change-of-variable-based cloaking scheme work?

Equivalent to: how much can a small inclusion affect bdry meas?

At freq 0: error estimate ρn in dim n (no damping)

At freq 6= 0:

- complete failure if object to be cloaked is resonant
- difficulty fixed by introducing lossy shell
- error estimate 1/| log ρ| in 2D,

√
ρ in 3D.

Examples and numerics to be presented by Onofrei.
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