A Dielectric Invisibility Carpet

Jensen Li

Prof. Xiang Zhang's Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA

> Theory developed with Sir John Pendry, Imperial College London, UK

CLK08 - 09/22/2008 Presented at Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park

Invisibility Carpet

Conceal an object on the ground

Work for optical frequencies

Can be made from dielectrics – practical for experiments

Metamaterials fabricated in Xlab ...

xlab.me.berkeley.edu

A Negative Index Material by Fishnet Thick Metal Strips Thin Metal Wires Fishnet –1 µm– Combined Magnetic Electric Dispersion Dispersion Dispersion Mode 2 300 Frequency (THz) 200 Magnetic band gap Electric band gap **Overlap** region 100 Mode 1 20 20 30 50 20 0 10 30 40 50 0 10 40 60 10 30 50 40 0 Phase Advance (deg) Phase Advance (deg) Phase Advance (deg)

J. Valentine, et. al., Nature 455, 376 (2008).

Optical Negative Refraction in Bulk Metamaterials Made of Metallic Nanowires

J. Yao, et. al., Science **321**, 930 (2008).

Outline

- Cloaking and Transformation Optics
- Limitation of Metamaterials with metals at Optical Frequencies
- Invisibility Carpet
 - Compress object to flat conducting sheet
 - Design using quasi-conformal map
 - A profile of ϵ >0, μ >0 without extreme values, easier to fabricate and broadband
 - Full wave simulations

A controlled mirage

- Cloaking
 - guide light as desired, principle like mirage
- **Coordinate Transform**
 - Maxwell Equation invariant
 - Only material parameters (E and μ) changed

D Schurig, et. al., Science 314, 977 (2006).

Race to lower loss near optical frequency Gold nanorods pair

 Resonating element giving rise to both electric magnetic response

$$-n' = -0.3$$
, $F = |n'|/n'' = 0.1$ at $1.5 \mu m$

Fishnet

$$-n' = -1, F = |n'|/n'' = 3 \text{ at } 1.5 \ \mu m$$
$$-n' = -0.6, F = |n'|/n'' = 0.5 \text{ at } 780 nm$$

3D Fishnet

$$-n' = -1.23, F = |n'|/n'' = 3.5 at 1.8 \,\mu m$$

Reasons of high loss

- Resonant nature of the structure
- Very near to magnetic resonance

V M Shalaev, et. al., Opt. Lett. **30**, 3356 (2005). G Dolling, et. al., Opt. Lett. **32**, 53 (2007). J. Valentine, et. al., Nature **455**, 376 (2008).

Avoid Magnetic resonance for cloaking at optical

- Ag nanowires in Silica
 - Reduced parameter approximation: $(\varepsilon_{\theta}, \varepsilon_{r}, \mu) \rightarrow (\varepsilon_{\theta}\mu, \varepsilon_{r}\mu, 1)$
 - Size of unit cell ~ 100 nm, H-polarization @ 632.8nm
 - non-magnetic metamaterials in reduced material parameters

At optical frequencies ...

Metamaterials (resonating elements)

- Advantage: large range of material parameters
- Disadvantage: Elements subwavelength, absorption
- Dielectrics (far away from resonance)
 - Low absorption, easy to fabricate
 - Broadband: Frequency independent

Limitation of Dielectrics

Limited anisotropy for fixed permittivities

Extreme permittivities needed for large anisotropy $\varepsilon_1 = 0.05, \varepsilon_2 = 8$ from Y. Huang, et.al., Opt. Exp. 2007

Extreme values related to the topology of cloak

- how we crush an object

Three ways to crush an object

• Crushing an object into a point, a line or a plane

Hiding under a carpet

- Perceived as a flat ground plane
- Avoid singular/extreme values for ϵ and μ

Material parameters: $\vec{\mu}, \mathcal{E}_z$

Minimize the anisotropy by an appropriate coordinate transformation

Transformation Optics

• E-polarization for 2D

Material parameters:

$$\vec{\mu} = \begin{pmatrix} \mu_{xx} & \mu_{xy} \\ \mu_{xy} & \mu_{yy} \end{pmatrix}, \mathcal{E}$$
$$\nabla \cdot \frac{\vec{\mu}}{\det \vec{\mu}} \cdot \nabla E = -\left(\frac{\omega}{c}\right)^2 \mathcal{E}E$$

In general coordinates:

$$\frac{\partial}{\partial q^{i}} \left(\frac{\Omega \mu^{ij}}{\det \left(\Omega \mu^{ij} \right)} \frac{\partial E}{\partial \xi^{j}} \right) = - \left(\frac{\omega}{c} \right)^{2} \Omega \varepsilon E$$

$$\tilde{\mu}^{ij} \left(\xi \right) = \delta^{ij} \qquad \tilde{\varepsilon} \left(\xi \right) = 1$$

$$\varepsilon \text{ and } \mu \text{ in } \xi \text{ as if it is Cartesian}$$

$$\begin{bmatrix} \mu^{ij}(x) \end{bmatrix} = SS^T / \Omega$$
$$\varepsilon(x) = 1 / \Omega$$

General Coordinate: (ξ^1, ξ^2)

$$\begin{aligned} \boldsymbol{\xi}_{i} &= \frac{\partial \mathbf{r}}{\partial \boldsymbol{\xi}^{i}} \\ \boldsymbol{g}_{ij} &= \boldsymbol{\xi}_{i} \cdot \boldsymbol{\xi}_{j} \qquad \boldsymbol{S}^{i}{}_{j} = \frac{\partial x^{i}}{\partial \boldsymbol{\xi}^{j}} \\ \boldsymbol{\Omega} &= \left| \boldsymbol{\xi}_{1} \times \boldsymbol{\xi}_{2} \right| = \det \boldsymbol{S} = \sqrt{\det \boldsymbol{g}} \\ \boldsymbol{\mu}^{ij} \left(\boldsymbol{\xi} \right) &= \boldsymbol{\xi}^{i} \cdot \boldsymbol{\mu} \cdot \boldsymbol{\xi}^{j} \end{aligned}$$

Local Dispersion Surface

• The contravariant tensor

 $\frac{\partial}{\partial \xi^{i}} \left(\frac{\Omega \mu^{ij}}{\det \left(\Omega \mu^{ij} \right)} \frac{\partial E}{\partial \xi^{j}} \right) = - \left(\frac{\omega}{c} \right)^{2} \Omega \varepsilon E \qquad \text{with } \frac{\partial}{\partial \xi^{i}} \to ik_{i}$ Local dispersion surface: $\gamma^{ij}(\xi)k_i(\xi)k_j(\xi) = \left(\frac{\omega}{c}\right)^2$ Contravariant $\left[\gamma^{ij}(x)\right] = S\left[\gamma^{ij}(\xi)\right]S^{T} = SS^{T}$ General Coordinate: (ξ^1, ξ^2) $\xi_{i} = \frac{\partial \mathbf{r}}{\partial \xi^{i}}$ $g_{ij} = \xi_{i} \cdot \xi_{j} \qquad S^{i}{}_{j} = \frac{\partial x^{i}}{\partial \xi^{j}}$ Eigenvalues of $\left[\gamma^{ij}(x)\right]:\frac{1}{n_L^2},\frac{1}{n_T^2}$ $\Omega = |\xi_1 \times \xi_2| = \det S = \sqrt{\det g}$

 $\mu^{ij}\left(\boldsymbol{\xi}\right) = \boldsymbol{\xi}^{i} \cdot \boldsymbol{\mu} \cdot \boldsymbol{\xi}^{j}$

Anisotropy at a single point

Dispersion Surface: $\alpha = n_T/n_L$ measures the anisotropy $n_T^*n_L$ measures the size

Quasiconformal map minimizes anisotropy

 $\left[g_{ij}\right] = S^T S$

metric

Jacobian

- Relationship between anisotropy factor and metric $\alpha = \max(n_T / n_L, n_L / n_T).$
 - $\alpha + \frac{1}{\alpha} = \frac{Tr(g)}{\sqrt{\det g}}$

- Modified Liao generator

$$\Phi = \frac{1}{hw} \int_0^w d\xi \int_0^h d\eta \left(\frac{Tr(g)}{\sqrt{\det g}}\right)^2.$$

Simple grid before minimization

Quasi-conformal map

Properties of quasi-conformal map

W

conformal module m = w/h

- Properties
 - Orthogonal
 - Rectangular cell with constant aspect ratio M:m
 - Anisotropy factor/ cell aspect ratio: $\alpha = \frac{M}{m}$

A carpet cloak using quasi-conformal map

- Principal axes always align to the grid lines
- Anisotropy generated by stack of two isotropic materials

Ray tracing

• Geometrical optics limit

Further approximation to ease fabrication

- Reduced Parameter Approximation (Previous approaches)
 - Need impedance match at outer boundary of cloak

 $(\mu_T, \mu_L, \varepsilon) \rightarrow (\mu_T \varepsilon, \mu_L \varepsilon, 1)$

• Isotropic Approximation (Our approach)

- Need to have a thicker coating

 $(\mu_T, \mu_L, \varepsilon) \rightarrow (\sqrt{\mu_T \mu_L} = 1, \sqrt{\mu_T \mu_L} = 1, \varepsilon)$

Dielectric Invisibility Carpet

- $n_T/n_L = \alpha = 1.042$, regarded as 1, i.e. $\mu = 1$
- $\epsilon = n_T n_L = 0.7$ to 2.0, relative to background
- $\epsilon = 1.5$ to 4.4 if SiO₂ is the background
 - Cloak can be obtained by drilling holes in Si

Cloak at oblique incidence angle

• Split into two separate beams without cloaking E_{z} with Cloak -1 -2 Object > w/o Cloak X -2

• Within a hollow waveguide ($\lambda = 0.7$)

- Near field pattern recovered (point source on the left)
- Squeezed upwards and without reflection

Broadband Cloaking

- Small range of dielectric constant & little frequency dispersion
- Reflected Gaussian wave packet undistorted

Take Home Messages

- · An invisibility carpet compresses object to a thin plate
- · Quasi-conformal map to minimize anisotropy
- Dielectric fabrication is possible thru isotropic approximation
- Broadband Cloaking is possible

Manuscript available at arXiv:0806.4396