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1. M is bounded uniformly in σ.
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We note that γ, φk and M generically depend on ρ.
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“
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with C independent of the conductivity σ (inside ρD).
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as a example take the thin filament: Dρ = (−1, 1)× (−ρ, ρ) !!
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In the two-dimensional scattering context a formal analysis indicates

that Cω ≤ Cω2 for ρω << 1, and we suspect
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The constants C and ρ0 depend on ω and d0, but are completely

independent of Aρ and qρ inside Bρ.

We do not believe the expression ρ1/2 for n = 3 is optimal (it should

probably be ρ)

We are currently studying.the issue of uniformity with respect to ω.

This study we are initially conducting in the context of the scattering

problem (Ω = IRn) to avoid some of the eigenvalue issues.


