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Representation Formula
Vy € 092, upo(y) —uo(y) = p"|DIMVuo(z0)-VaN(zo,y) +o(p")

N(x,y) is the Neumann function for V - (6oV ):

Va - (00VaN(z,y)) = dy in Q
(00VzN) - vy = |—1| on Of).

M 1is the “rescaled” polarization matrix
GIVEN A FIXED o (FOR EXAMPLE 09 = I) THERE ARE TWO

REMARKABLE FACTS

1. M is bounded uniformly in o.

2. o(p™)/p" — 0 as p — 0 uniformly in o and ¥, provided

Hw“H—l/2(aQ) < L
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For o9 = I, M is defined as follows

1 0
Mi,kz—/ 52','—0'7;' Pz _¢k dZ ,
D] J, 01 =) 5

where

Ve (1(2)V:¢r) =0 in IR" |

O — 2k, — 0 as|z| o0 , with

)
I for z in IR" \ D
7(2) = 4

\a(pz) for z in D

We note that v, ¢ and M generically depend on p.
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V-(o6,Vv,)=F in
(6,Vu,)-v=f on 0f2.
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Define the energy

1
Ep(fu):§/Q<JPVfU,VfU> dx—l—/QFfU dx — anfU do

Suppose suppF CC Q2 \ pD. Then

By (vp) = Eo(vo)| < Cp™ ([1F 32 + 1/ 312

with C' independent of the conductivity o (inside pD).
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Proof: suppose E,(v,) > Eo(vp), then
[Ep(vp) — Eo(vo)| = Ep(vp) — Eo(vo)
< E,(v*)— Eo(vo) for any v* € H'(Q)

suppose g = 0, and select

v (@) = Xp(x)v0(0) + (1 = xp(2))vo()
with x, =1 in B,, x, = 0 outside B2, ( where pD C B,).
Then

2(E,(v") — Eo(vo))
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From before we know that
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and so by “polarization”

| < Ap(F, ), (G, g) > | < Cp" (IIF|l2 + 1 fll gr-1/2)
< (G2 + llgllz-1/2)

or
|vp — UOHL2(Q\B5) + [|vp, — UOHH1/2(aQ) < Cp" (HFHLZ + HfHH—1/2)

in particular N
Jup — w0l gr1/200) < Cp |l g-1/2(0)

or

IAZY — At =1/2 g2 < Cp"

with C completely independent of the conductivity, o, inside the
inhomogeneity pD.
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Here p is a probability measure (u = lim 1p, weak™ in C? (Q) )

p—0 | D,

and M is a matrix valued function in L*(, du).

but in this case we do not in general (for D, # xo + pD) get that
HA;pl — Agol||H_1/2_>H1/2 approaches 0 uniformly with respect to o, as

|D,| approaches O.

as a example take the thin filament: D, = (—1,1) X (—p, p) !!
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there are eigenvalue issues.

2

On the one side: if —w” is not an eigenvalue corresponding to Ag, qo,

then for any fixed parameters A and ¢ (inside pD) there exists pg such

that —w? is not an eigenvalues corresponding to A4,, q,, for p < po, and

lup — woll g1/200) < Cup” 1] -1/250)

In the two-dimensional scattering context a formal analysis indicates
that C,, < Cw? for pw << 1, and we suspect

|us,pllL2(80) < Cv/p

for a ”unit-sized” incident wave, with C independent of w.



On the other hand: even if —w? is not an eigenvalue corresponding to
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The constants C' and pg depend on w and dp, but are completely

independent of A, and ¢, inside B,.

We do not believe the expression ,01/ ¢ for n = 3 is optimal (it should

probably be p)

We are currently studying.the issue of uniformity with respect to w.

This study we are initially conducting in the context of the scattering

problem (€2 = IR™) to avoid some of the eigenvalue issues.



