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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

Ẏ = −ε−1(Y −X)

when ε = 0.1 and we took X(0) = 2, Y (0) = −1. X is shown in blue, and Y in
green. Also shown in red is the solution of the limiting equation

Ẋ = −X3 + cos(t) + sin(
√

2t)
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The solution of {
Ẋ = −Y 3 + cos(t) + sin(

√
2t)

dY = −ε−1(Y −X)dt + ε−1/2dW

when ε = 0.01 and X(0) = 2, Y (0) = −1. X is shown in blue, and Y in green.
Also shown in red is the solution of the limiting equation

Ẋ = −X3 + X + cos(t) + sin(
√

2t)

Notice how noisy Y is.



Outline

HMM-like multiscale integrators vs projective integration methods

What are they? Why are the different? When are they applicable?

Toward seamless multiscale integrators? Boosting method

Application to free energy calculations and phase-space exploration



Projective Integration Methods (Gear & Kevrekidis 03; Eriksson, Johnson, & Logg 03)

Suitable for systems with widely separated time scales in which some
slow variables exists which satisfy a closed ODE.

1. Make a few small time steps to estimate the rate of change of
the slow variables via finite-difference;

2. Use this estimate to make a large extrapolation step;

3. Repeat.

relaxation steps

x

y

slow manifold

extrapolation step

Key idea = extrapolation: “The reader might think that these should
be called ‘extrapolation methods,’ but that name has already been
used [...]. Hence we call the proposed methods projective integration
methods.” [from Gear & Kevrekidis SIAM J. Sci. Comp. 24(4):109-
110 (2003).]



Why do projective integration methods work?

Consider the ODE {
Ẋ = f(X, Y )

Ẏ = −ε−1(Y − φ(X))
(?)

Typical stiff ODE with slow manifold:

If ε � 1, Y is very fast and it will adjust rapidly to the current value
of X, i.e. after short O(ε) transient we will have

Y = φ(X) + O(ε) at all times.

Then the equation for slow variables X reduces to

Ẋ = f(X, φ(X)) (??)

1. Simulate (?) for a few micro-steps with time-step δt = O(ε) (i.e
small enough to resolve the fast motion) until the system reaches
the slow manifold, i.e. Y = φ(X) + O(ε);

2. Extrapolate the last micro-step, i.e. make a macro-step with
time-step ∆t = O(1), effectively simulating (??);

3. Repeat.



Why is this better?

Basically, it only takes O(log ε−1) steps to reach an O(1) time-scale.

Indeed O(log ε−1) is the number of micro-steps necessary to relax the
system O(ε) close to the slow manifold and be able to take an O(1)
extrapolation step.

In contrast, the naive explicit schemeXp+1 = Xp + δt f(Xp, Y p),

Y p+1 = Y p +
δt

ε
g(Xp, Y p),

takes O(ε−1) steps to reach an O(1) time-scale.



In the context of stiff ODEs:
Projective integration methods = poor man’s implicit scheme.

Xn+1 = Xn + ∆tf(Xn+1, Y n+1)

Y n+1 = Y n −
∆t

ε
(Y n+1 − φ(Xn+1))

When ε � ∆t � 1:{
Y n+1 = φ(Xn) + O(∆t) + O(ε),

Xn+1 = Xn + ∆tf(Xn, φ(Xn)) + O(∆t2) + O(ε)

Advantages: very simple to use and seamless. In particular projective
integrators are applicable toẊ = f(X, Y )

Ẏ =
1

ε
g(X, Y )

or Ż = h(Z, ε)

provided that the solution is rapidly attracted to a slow manifold.

However: Other methods can be more efficient – Chebychev meth-
ods, implicit schemes, etc.



Projective integration methods can be extended to systems other
than stiff ODEs.

In this case, they stop being seamless (one must know what the slow
variables are) and they are based on the same idea of extrapolation:
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Fig. 2.3. Schematic representation of an explicit projective integrator. Notice the lifting, the
evolution with successive restrictions, the estimation of the coarse time derivative, and the projection
step followed by a new lifting.

and subsequently use it to extrapolate the coarse solution at the next time level,

UN+1 = P ((N + 1)∆T ).

The Projective Forward Euler method is the case when q = 1. Alternatively, a
multistep version of (2.7) can be used [95].

The general procedure is illustrated in Fig. 2.3: an initial condition is taken in
coarse space (e.g. a density field) and lifted to a consistent distribution in microscopic
space (e.g. cells for a chemotaxis problem). The microscopic code is used to evolve the
distribution long enough for the higher moments, that have been incorrectly initialized,
to heal. A few more evolution steps are then taken, and the solutions restricted to
coarse space (densities). Successive density profiles are used to estimate the time
derivatives of the (unavailable) density equation (again, an identification step). The
profile of the (coarse) density function can be represented by the basis functions
used in any of the traditional numerical discretization techniques, including finite
differences, finite volumes, finite elements and spectral methods. The time-derivatives
for the coefficients of the basis function will be estimated, and used in the projective
integration step; finite difference (nodal), finite element as well as empirical basis
function representations have been illustrated in [4].

We have analyzed and used such two-tier (and multi-tier) EFM projective in-
tegrators for what we term “coarse integration” of the macroscopic equations using
microscopic as well as stochastic detailed time-steppers. Fig. 2.4, taken from [4] shows
time-series as well as long-term attractors of such an “inner LB, outer FEM” one stage

Projective integration methods assume the existence of a limiting
equation for the slow variables but do not use it explicitly.

⇒ “Equation free approach”.



HMM-like Integrators (V.-E. 03; E & Engquist 03)

Unlike projective integration methods, HMM-like integrators explicitly
use the limiting equation for the slow variables – antipodal to the
equation free approach.

Key limit thm: Consider{
Ẋ = f(X, Y ),

dY = ε−1g(X, Y )dt + ε−1/2σ(X, Y )dW (t),
(?)

Assume that: (i) the evolution Y at every fixed X = x is ergodic with
respect to the probability distribution

dµx(y)

and (ii)

F (x) =

∫
Rm

f(x, y)dµx(y) exists

Then in the limit as ε → 0 the evolution for X solution of (?) is
governed by

Ẋ = F (X)

In addition

F (x) =

∫
Rm

f(x, y)dµx(y) = lim
T→∞

1

T

∫ T

0
f(x, Y x

t )dt

where

dY x = ε−1g(x, Y x)dt + ε−1/2σ(x, Y x)dW (t)



Basic HMM-like integrator

Use

Xn+1 = Xn + ∆t F̃ n, X0 = X(t = 0)

Here F̃n is an approximation of F (Xn) obtained as

F̃ n =
1

MT

M+MT∑
m=M

f(Xn, Y n,m)

where

Y n,m+1 = Y n,m +
δt

ε
g(Xn, Y n,m) +

√
δt

ε
σ(Xn, Y n,m)ξm,

Y0,0 = Y (t = 0), Y n+1,0 = Y n,M+MT−1

Why is this better?

Basically, because M and MT are O(1) in ε! In other words, one can
reach an O(1) time-scale with a O(1) number of steps.

In contrast, the direct schemeXp+1 = Xp + δt f(Xp, Y p),

Y p+1 = Y p +
δt

ε
g(Xp, Y p),

takes O(ε−1) steps to reach an O(1) time-scale.



Error estimate:

(E, Liu & V.-E. 03; E & Engquist 03)

Thm: For any T > 0, there exists a constant C > 0 such that

E
(

sup
0≤n≤T/∆t

|X(n∆t)−Xn|
)
≤ C

(
√

ε + (∆t)k + (δt/ε)l +

√
ε∆t

MTδt

)



Summarizing:

Projective integration methods are extrapolation methods. In the
context of stiff ODEs there are totally seamless; more generally,
they require to know what the slow variables are but not what their
limiting equation is.

Projective integration methods do not use explicitly the limiting equa-
tion for the slow variables.

HMM-like multiscale integrators use the limiting equation for the slow
variables explicitly.

The key idea is integrate this equation by evaluating numerically
and on-the-fly the coefficients in this equation when these are not
available analytically in closed form.



Toward seamless multiscale integrators?

HMM-like integrators require to know explicitly what are the slow and
fast variables. Can we do better? Can we extend the extrapolation
strategy in a seamless way to systems more general than stiff ODEs?

Recall that

F (Xn) ≈ F̃ n =
1

M

M+MT−1∑
m=MT

f(Xn, Y n,m)

and observe: the HMM-like multiscale integrator works even if MT =
1 (no time averaging) provided only that

ε �
ε∆t

Mδt
� 1

The factor λ = ∆t/Mδt also gives the efficiency boost the HMM-like
multiscale integrators over a direct scheme.

Why is time-averaging unnecessary (since in this case the approxi-
mation on F̃ n is very bad at each time step)?



HMM without time-averagingẊ = f(X, Y )

dY =
1

ε
g(X, Y )dt +

1
√

ε
σ(X, Y )dW (t)

(?)

Scheme:

1. Use:

Y n,m+1 = Y n,m−
δt

ε
g(Xn, Y n,m)+

√
δt

ε
σ(Xn, Y n,m)ξn,m, Y n,0 = Y n−1,M

2. Use

Xn+1 = Xn + ∆t f(Xn, Y n,M)

3. Repeat.

Denoting λ = ∆t/Mδt, this integrator approximatesẊ = f(X, Y )

dY = −
1

λε
g(X, Y )dt +

1√
λε

σ(X, Y )dW (t)
(??)

Hence, by the limit theorem, it approximates (?) and boost the effi-
ciency by λ if

ε � ελ � 1 or equivalently Mδt � ∆t � ε−1Mδt



Seamless multiscale algorithm – Boosting method

Consider

dZ =
1

ε
h1(Z)dt +

1
√

ε
h2(Z)dW (t) + h3(Z)dt + h4(Z)dW̄ (t)

and assume that there exist slow variables X = φ(Z) which satisfies
the closed SDE

dX = F (X)dt + G(X)dW (t) as ε → 0

1. Use

Zn,m+1 = Zn,m +
δt

ε
h1(Z

n,m) +

√
δt

ε
h1(Z

n,m)ξn,m,

2. Use

Zn+1,0 = Zn,M + ∆t h3(Z
n,M) +

√
∆t h4(Z̃

n,M)ηn

3. Repeat.

Seamless in that one does not need to know the slow variables X
are. Works because it approximates

dZ =
1

λε
h1(Z)dt +

1√
λε

h2(Z)dW (t) + h3(Z)dt + h4(Z)dW̄ (t)

with λ = ∆t/Mδt.

Similar in spirit to Chorin’s artificial compressibility method, the Car-
Parrinello method in molecular dynamics, etc.



Application to free energy calculation and phase-space exploration

(joint work with L. Maragliano)

Definition: Consider a random variable X ∈ Rn with the Boltzmann-Gibbs probability
distribution;

dµ(x) = Z−1e−βV (x)dx Z =

∫
Rn

e−βV (x)dx

where V (x) is the potential, β > 0 is the inverse temperature.

Let θ : Ω 7→ RN be a set of collective variables (aka vectorial reaction coordinates).

The free energy associated with θ is the function G : RN 7→ R such that:

e−βG(z)dz is the probability distribution of Z = θ(X).

In formula:

G(z) = −β−1 logZ−1

∫
Rn

e−βV (x)δ(θ(x)− z)dx

= −β−1 logZ−1

∫
Σ(z)

e−βV (x)J(x)dσΣ(z)(x)

where Σ(z) = {x : θ(x) = z}, J(x) = |detM(x)|1/2, Mαβ(x) = ∇θα(x) · ∇θβ(x).



Relevance?

Consider a dynamical system modeled e.g. by the Langevin equation

Ẍ(t) = −∇V (X(t))− γẊ(t) +

√
2γβ−1η(t),

where γ is the friction tensor and η(t) = Ẇ (t) is a white-noise.

This system is ergodic with respect to the Boltzmann-Gibbs distribution;

Given any suitable f : Ω 7→ R

1

T

∫ T

0
f(x(t))dt → Z−1

∫
Rn

f(x)e−βV (x)dx almost surely (a.s.) as T →∞

In particular, letting f = F ◦ θ for some F : RN 7→ R:

1

T

∫ T

0
F (θ(X(t)))dt →

∫
RN

F (z)e−βG(z)dz a.s. as T →∞

The free energy permits to organize the data in terms of some relevant observables θ.



Temperature accelerated sampling method: Use extended system on state-space
(x, z) ∈ Rn × RN with potential

U(x, z) = V (x) + 1
2
k

N∑
α=1

(θα(x)− zα)
2

α2Ẍ(t) = −∇V (X(t))− k

N∑
α=1

(θα(X(t))− Zα(t))∇θα(X(t))− αγẊ(t) +

√
2αγβ−1η(t)

Z̈α(t) = k(θα(X(t))− Z(t))− γ̄Żα(t) +
√

2γ̄β̄−1η̄α(t)

Limit thm: As α → 0, the dynamics for Z(t) is approximately

Z̈(t) = −∇Gk(Z(t))− γ̄Ż(t) +

√
2γ̄β̄−1η̄(t)

where

Gk(z) = −β−1 logZ−1
k

∫
Rn

exp(−βV (x)−
1

2
βk
∑

α

(θα(x)− zα)
2)dx → G(z) as k →∞

So: Simulate the system above with α small enough, k large enough and β̄ < β, and
sample (i.e. bin) Z(t) to retrieve G(z) or (better) use thermodynamic integration
along trajectory.

Remark: Use constraint instead of restraints to eliminate error in k (i.e. take k →∞
exactly).



Example: CO diffusion in Myoglobin

Crystal structure of Carbon-monoxide (CO) - bound Myoglobin, as deposited in the Protein Data Bank

archive. The backbone chain is represented in ”ribbons” style so to show the alpha-elices structure

of MB. The heme is represented as sticks and the Iron atom in the middle as a yellow sphere. The

ball-and-stick model is the CO molecule, bound to the Iron atom.



Experiment using time-resolved X-ray crystallography

Time-resolved X-ray diffraction on photolyzed Mb.

Given the crystal with the bound CO, a laser flash to break the bond FE-CO. Then the diffraction
patterns using a a time-delayed X-ray pulse on the crystal (picosecond Laue crystallography). Magenta
is the pre-photolysis structure (CO-bound), and green are the structures at delayed times. When these
are similar to pre-photolysis crystal structuresthey are colored white.

From F.Schotte et al. Science 300: 1944–1947 (2003).



Free energy map of CO relative to binding site (Iron)

Sampling by one-sweep 5 different trajectories. In red are shown the residues that are used to define the
Xe1 cavity (i.e. they surround the cavity), in yellow same for Xe4. The time-scale of the simulations
is 100 picosecond; kBT̄ = 7kBT .
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