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Motivation

Limitations of the conventional atomistic MD and NEMD simulations

* Only applicable to short-chain systems with a small relaxation time (e.g., < C,,)
* Even more difficult for branched polymers

* Problem in statistical accuracy at low strain rates

 Slow achievement of the steady-state, especially at low strain rates

Prediction of the shear viscosity

* Brown-Clarke, 1983; Clarke-Brown, 1986; Edberg et al., 1986; Morriss et al., 1991;
Daivis et al., 1992; Xu et al., 1995; 1996; Mondello et al., 1997

State-of-the art

* C,e» C,, [de Pablo et al., 1994]

* C, oo but for shear rates > 109 s-1 [Cummings et al., 2000]

* C,oo (linear and its non-linear isomers) for shear rates > 108.5 s-1 [Jabbarzadeh et
al., 2003]

* C,,5 [Baig, Keffe, Edwards, 2006]



e Internal Flip [Mavrantzas & Theodorou, 1999]

* Concerted Rotation [Dodd et al., 1993]

» Reptation [Vacatello et al., 1980] }
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* Generalized Reptation * Volume Fluctuation
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sreduced performance with decreasing

a) polydispersity index and/or
b) number of chain ends

 performance increases as chain length
increases!
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MC SIMULATION OF LONG LINEAR PE MELTS
[24-chain C,,,, PE melt, I=1.04, T=450K, P=1atm]

Atomistic Model

* United atom model: Each methylene and methyl considered as a single interacting site
« Constant bond lengths (I=1.54A)

* Flexible bond angles [Martin and Siepmann, 1998]

 Torsional potential [Toxvaerd, 1997]

*A 6-12 Lennard-Jones potential (inter-molecular interactions) [TraPPe]



» Bond bending potential
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— simulation results
O X-ray diffraction data (Honnell et al., 1991)
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IDR move applies between different branches of the same
chain
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Extension to Branched Polymers: Atomistic snapshots

(A)

Typical atomistic snapshots of an H 400 70 system
(A) Before equilibration

(B) After equilibration with the new algorithm (T = 450K, P = 1atm)
[With blue and green are shown the atoms of the main backbone and of

the branches, respectively, of an arbitrarily selected H-molecule]



Key Question

Would it be possible to employ Monte Carlo also in order to:
- simulate systems beyond equilibrium?
- generate realistic shear or elongational flows?

First attempt to apply MC to a nonequilibrium system [Mavrantzas-Theodorou, 1998]
- demonstrated how to excite chain molecules in a 1-d elongational flow by introducing
field terms in the Metropolis criterion
- the field was chosen arbitrarily
- did not compare against direct NEMD simulations quantitatively

In a later study [Mavrantzas-Ottinger, 2002]
- need to be guided by principles of non-equilibrium thermodynamics

- General Equation for the NonEquilibrium Reversible-Irreversible Coupling =
GENERIC MC

More recently [Beris et al., 2006]
- used such a method in the context of a lattice model to simulate high extensional flows

- showed how one can use the new method in order to formulate also more accurate
viscoelastic models
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* Energy and Entropy functional

E(x)= j{;ﬁ:()l.) + g(r)} dr; S(x)= Is(p(r),g(r),X(r)) dr

 Thermodynamic state variables, x
(

* p~mass density
X={p(r), u(r), a(r), X(r)} [C) | | 71~ momentum density

* &~ internal energy density
* X ~ structural variables




o Coarse-grained thermodynamic structural variable [Beris-Edwards, 1994]

3(RR)

¢ = ~ Conformation tensor

0 Fundamental thermodynamic function of nonequilibrium system

= U(S,V,N,N&) =TS - PV + iN +kyTor: NE




2. The relevant probability density function in the phase space is given through

N
. 3N _ 1 _ ch
Q(Nch,n,P,T,a)—const.jd rdv exp I<B—TU(r)+PV kT %aya[u=1 cws]

3. The corresponding generalized statistical ensemble is [N ,nPTp*a]:
N, total number of chains

n, total number of atoms
P, pressure
T, temperature

u*, reduced chemical potentials (to control the MW distribution)
o, tensorial filed
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Application: steady simple shear flow
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Remark 2: One can solve for the field o by inverting the above equation
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1 A7 1 Ay (1-2p)C,, + BC, +C)=1-p
2.2 2.2
2l Ay 21+ 4477 (1=2B)E,, — AFE,, + B(EyC,, +E,C,) =0
o = l AH}/ _l ﬂ,sz/z 0 (l_zﬂ)exx_zﬂ‘j/exy+ﬂ(f6x2x+6x2y):1_ﬂ
21+ 4,77 21+ 4,5 ¢ =1
0 0 0

Remark: The field o is model-dependent
Idea: Define oo by mapping the resulting structure onto NEMD results (iteratively)



Step 1:

Step 2:

Step 3:

Step 4:

Step S:

Step 6:

Overall procedure of the GENERIC MC methodology

Choose the thermodynamic state variables and determine forms of the

corresponding conjugate variables for given flows | x={po(r), u(r), &(r){¢(r)}

Select a viscoelastic model to estimate the conjugate field variable as a
function of shear rate

Execute the GENERIC MC simulations and analyze the resulting structure

Check if the structure converges to the true one as obtained from NEMD
simulations

Iterate until convergence

Improve the viscoelastic models based on the obtained results (it would
require additional simulations for different chain lengths)



GENERIC MC and NEMD simulations

Test System

- A 120-chain C, PE oligomer melt in (93x45x45) A3
"T=450 K, p=0.7438 g/cm? ; Rouse time, 7; ~ 0.5 ns
- Five different states in a broad range: 0.43 < De <106

Potential model
- TraPPE (with flexible or fixed bond lengths)

NEMD simulations
- SLLOD equations of motion [Evans-Morriss, 1990]
- Time duration: 4.7 ns for the highest shear rate, 47 ns for the lowest one

GENERIC MC simulations

-Total 500 million cycles for all the shear rate

- Initial values of o using the Giesekus model

- 6 to 8 iterations were sufficient for reproducing the non-equilibrium state

- one iteration took approximately 4~5 days using 2.2 GHz Opteron CPUs
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Conclusions

Developed a non-dynamic methodology (GENERIC MC) for simulating the steady state
properties of an unentangled PE melt under a shear flow

Advantages over NEMD simulations: - reaches faster the steady-state
{ reliable results even at low strain rate

New method provides a means for calculating the free energy of the non-equilibrium system;
thus it can serve as a guide for improving existing viscoelastic models

Current - Future plans

Investigate the relation between o and De as a function of chain length so that o can be
defined without the need of any NEMD simulations

For entangled polymer melts, we may have to excite additional modes along the chain or
even the entire primitive path [Everaers, Kremer, et al., Science, 2005]

Map results onto a new viscoelastic model (to provide good guesses for o for a given flow)

In the long term: Apply the GENERIC MC to branched polymers (e.g., H-shaped melts)



Modified FENE-Cohen+Giesekus Model
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Thermodynamic admissibility of the Modified FENE-Cohen+Giesekus Model
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