Data assimilation of tree-ring-width-like
observations using ensemble Kalman
filtering techniques
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Traditional climate reconstruction methods
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Weak = Completely data driven  ° Loosely linked to observations
points ° VERY different proxy data (internal variability unconstrained)
treated indifferently * Forcings quite uncertain




Data assimilation approach
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Data assimilation approach
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Data assimilation approach
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Spectrum of tree-ring growth forward models

(Tolwinsky-Ward 2012)
Complex

Pseudo-proxy VS-Lite Model’ TreeRing Model
Tree-ring Tree growth driven by =~ Simulates:
Chronology * Limiting factors: Tree water balance,
| - Surface temperature Photosynthesis,
Climate Index - Soil moisture Carbon allocation,
+ * Modulating factor Crown growth
Noise - Sunshine Cambial Activity




Vaganov-Shashkin-Lite model scheme’

Response functions
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Special Features: _
Simulated

@ Saturation (beyond thresholds) Tree-ring width
@ Competitive recording of 2 variables (Shifting) Chronology

@ Time-averaging




Time-averaged Data Assimilation®

@ Ti ition
Time average decompositio / T,..: Time average length \

X" (tn) = X (tn) + X*(t0) — o
where | ZZZ | —
— b 1 tn H_/
X (t,) = — X°(t') dt’ Tassim : Assimilation Period
Tea Jt, —7ia K P : Observation density /
@ Observation generation
tn
trw(t,) = Gr(X°(t")) dt’
tn_Tta

@ Assimilation step
X" (t,,) is the update of Xb(tn) given trw(t,) using EnKF® and EnKBF*

~-a

» Time average recomposition X%(t,) = X (t») + X°(tn)



Lorenz 96 model with 2 components®

2 components with equal
spatial and time scales

Model equations : |
dX;/dt = X;_1(Xip1 —Xi2) - X;+Y, + F,
dY;/dt = Y1 (Yio1— Yiio)-Y, —X;, i=1...40.

Tree-Ring-Width: trw(t,) = | Gr(t) dt

Growth Rate: Gr; = min(R(X;), R(Y;))
R(X) 1“ ......

Response functions:
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Observation generation

X1 and Yl on time

Saturation Level
0 : no thresholding
1 : complete thresholding

Response functons - X4
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Filter Skill vs observation operator
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Instantaneous Observation operator

Gr; = min(R(X;), R(Y;)) Gr; = R(X;) - R(Y;)
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VS-Lite growth rate function  VS-Lite growth rate function
with smooth shifting of

recorded variable



Saturation level dependency

1 —=— EnKF (40 obs.)
—o— EnKF (26 obs.)
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Preliminary findings and prospect

* VS-Lite non-linearities substantially deteriorate filter
performance

* Smoother switching of recorded variable recovers
most of the lost skill

* Filter performance was very robust to VS-lite
response function saturation.

* Currently carrying out tree-ring DA experiments for
the simplified parametrization GCM SPEEDY® using
SPEEDY-LETKF code’

* Planning to extend experiments to a coupled
atmosphere-land model
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Thanks for your attention !!
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