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Point-vortex systems: vortex motion

Consider m point vortices in the plane whose the equation of
motion of the k−th vortex is given by

dxk

dt
= − 1

2π

m∑
j=1
j 6=k

κj
yk − yj

(xk − xj)2 + (yk − yj)2

dyk

dt
=

1
2π

m∑
j=1
j 6=k

κj
xk − xj

(xk − xj)2 + (yk − yj)2 ,

where κj denotes the vortex strength.



Point-vortex systems: tracer motion

The motion of passive tracers (denoted by (x , y) without any
subscript) depends explicitly on time through the positions of
vortices. The velocity filed of the passive tracers are given by

dx
dt

= − 1
2π

m∑
j=1

κj
y − yj

(x − xj)2 + (y − yj)2

dy
dt

=
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m∑
j=1

κj
x − xj

(x − xj)2 + (y − yj)2 .



“True" and Forecast Models
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Truth and Model Forecast
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Figure: κ1 = κ2 = κ3 = 1, κj = 0.03 for j = 4, . . . ,30. The RMSEs for
the three vortices are 0.64, 0.43 and 0.44, respectively.



Lagrangian Data Assimilation

We do not want to rely only on the model forecasts to track
the large-scale vortices (i.e. estimate the "true" vortex
trajectories)
Suppose that we observe only (noisy) trajectories of
passive tracers (or drifters/floats)
Deployment strategy: Where should we initialize the
tracers?
Can we use some dynamical structures (e.g. LCS or
finite-time coherent sets) to aid the design of the launching
strategy?



Sequential Data Assimilation

Given the data y1:t := (y1, . . . , yt ), inference about xt is
carried out by

P(xt |y1:t ) ∝ P(yt |xt , y1:t−1)P(xt |y1:t−1)

The normalization term is omitted here
Prior distribution: (deterministic/stochastic) model
containing uncertainties in model itself or initial conditions
or both
Likelihood: uncertainties in predicting yt from xt (e.g.
yt = Hxt +“noise")



Ensemble KF (ENKF) with perturbed obsevation

Use the updating dynamics of classical KF, but for a prior
non-Gaussian distribution.
ENKF: use sample statistics to approximate Pf and Pa

Anomalies: Xf = [x f
1 − x̄ f | . . . |x f

N − x̄ f ]/
√

N − 1

xa
i (tk ) = x f

i (tk ) + Ke(tk )(yo(tk ) + εi(tk )︸ ︷︷ ︸
yi

−Hx f
i (tk )︸ ︷︷ ︸

y f
i (tk )

)

Xa = [xa
1 − x̄a| . . . |xa

N − x̄a]/
√

N − 1

Pf
e(tk ) = XfXfT , Pa

e(tk ) = XaXaT

Ke(tk ) = Xf (Yf )T (Yf (Yf )T + YYT )−1

Pa
e(tk ) provides a good estimate of the desired form when

N large and x f and εi uncorrelated
Use the ensemble mean 〈xa

i 〉 as the state estimate



Particle Filtering (PF)

Based on Sequential Important Sampling (SIS) with
Resampling
Use empirical distributions (weighted ensemble) to
estimate a target density
Does not make the Linear+Gaussian assumption
ENKF: Use the Kalman update equation to “move" the prior
samples by linear regression, but no weight on the samples
PF: Update the weights of prior samples based on the
Likelihood, but no “move", no linear regression
PF suffers from the curse of dimensionality. So, it’s not
available for high-dimensional problems



Truth and Model Forecast

Vortices: [x1, y1, . . . , x3, y3] ≡ xF

Tracers: [xd
1 , y

d
1 , . . . , x

d
3 , x

d
3 ] ≡ xD

State variable: (xF ,xD)

Model uncertainty: SDE with N(0,0.05I) for a model
forecast
Observation: (xD)+“noise"
Observation noise: Gaussian with zero mean and
covariance 0.05I



What is LCS?



Initial tracers



Truth and Model Forecast



Results: ENKF for three-point vortex system



Results: PF for three-point vortex system



Summary: Three-point vortex systems

There is a “vortex core" where vortex and tracer
trajectories are highly correlated
In these regions, data assimilation produces reliable
estimate of the true states
LCS may be used as a proxy to determine these vortex
core regions



Parameter Estimation and vortex tracking

Consider a system of two Rossby wave on the β−plane

ψ = A sin(k1(x − c1t) sin(l1y) + ε sin(k2(x − c2t) sin(l2y)

Phase speeds are cj = β/(k2
j + l2j )

Using the barotropic Co-moving frame
Problem: Estimating the unknown parameters
A, ε, k1, l1, k2, l2 and retaining observations within the
circulation region at all times
Approach: Use particle filtering and coherent set method
to adapt the tracer position
Twin experiments: assume that the true parameters are
A = 1, ε = 0.2, k1 = 1, l1 = 1, k2 = 1, l2 = 2.



True coherent set

(true coherent set)


truth_rossby1layer.avi
Media File (video/avi)



Observation with/without control



Posterior

(posterior)


movie_rossby1layer_trackcoherent_3.avi
Media File (video/avi)



Coherent set Estimates


	Model

