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Contents
First part:

* Forecasting the weather - we are really getting better!
* Why: Better obs? Better models”? Better data assimilation?

* Intro to data assim: a toy scalar example 1, we measure with
two thermometers, and we want an accurate temperature.

* Another toy example 2, we measure radiance but we want an
accurate temperature: we derive OIl/KF, 3D-Var, 4D-Var and
EnKF for the toy model.

* The equations for the huge real systems are the same as for
the toy models.

Second Part: Compare 4D-Var and EnKF in a QG model

* 4D-Var increments evolve like Singular Vectors

 LETKF increments evolve like Lyapunov Vectors (~Bred Vs)
 |nitial 4D-Var increments are norm dependent, not realistic
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Comparisons of Northern and Southern Hemispheres
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Comparisons verifying

forecasts aaainst observations
1-day forecasts, 850hPa, NH, verification of wind

Step: 24 RMSEF 850 hPa ft/n.hem/observations
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1-day forecast 500hPa Z, NH

Step: 24 RMSEF 500 hPa z/n.hem/observations

- CMC 12 — ECMWF 12 — MetOffice 12 ——— NCEP 12

JMA 12




3-day forecast, 500hPa, NH against observations

Step: 72 RMSEF 500 hPa z/n.hem/observations
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5-day forecast, 500hPa, NH, 12 month average

Step: 120 RMSEF 500 hPa z/n.hem/observations

— BOM 12 — ECMWF 12 ~ sesees DWD 00




Satellite radiances are essential in the SH

Observing
System

Experiments
(ECMWF - G.
Kelly et al.)

NoSAT= no satellite
radiances or winds

Control= like operations

NoUpper=no radiosondes,
no pilot winds, no wind
profilers
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Intro. to data assim: toy example 1 summary

A forecast b and an observation o optimally combined (analysis):

2
O, 1 1 1
T:Tb+ (T T) with —=—+—

’ o, +0. o. o0, O,

a

o

If the statistics of the errors are exact, and if the coefficients
are optimal, then the "precision" of the analysis (defined as
the inverse of the variance) is the sum of the precisions of
the measurements.

Second toy example of data assimilation including remote
sensing.

The importance of these toy examples is that the equations are
identical to those obtained with big models and many obs.




Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, like a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.9.> = }(T)~oT"




Intro. to remote sensing and data
assimilation: toy example 2

* Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
can only measure the radiance y (W/m?) that it emits. We have
an obs. model, e.q.: y=WT)~oT"*

* We also have a forecast model for the temperature
T(t,)=m|T@)];
eg., (., )=T()+ At [SW heating+LW cooling]

i+1



Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.9.:  y=h(T)~oT"

* We also have a forecast model for the temperature
T(t,)=m|T@)];
eg., (., )=T()+ At [SW heating+LW cooling]

i+1

* We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)



Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.g.:  y=nwT)~oT"

* We also have a forecast model for the temperature

T(t.)=m|T@)];
e.g.,T(t,,,)=T(t,)+ At SW heating+LW cooling |

« We will derive the data assim eqs (OI/KF and Var) for this toy
system (easy to understand!)

« Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

yo o h(Tb)
The final formula is very similar to that in toy model 1:
Ta — Tb + W(yo o h(Tb))

with the optimal weight W = GZH(GOZ + HGZH)_I
Recallthat T, =7, +w(y, —h(T,))=T, +w(e, — Hg,)

So that, subtracting the truth, €, =¢, + w(e, — HE))



Toy temperature data assimilation, measure radiance
Summary for Optimal Interpolation/Kalman Filter (sequential):

T =T +w(y, —h(T),)) analysis
. 2 > 2 7721 . .
with  w=0,H(0 +0,H") optimal weight

The analysis error is obtained from squaring €, = ¢, + w|e, — He, |

2
) o
2 A2 2 0 2
o, =€, =(-wH)o, = R O,
0 b

It can also be written as

1 ( 1 sz N
— = + analysis precision=

2 2 g : ..
o, O, forecast precision + observation precision




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Yo ™ h(Tb)
From a 3D-Var point of view, T —TYY (WT )=V )
we want to find a T, that ](Ta)=( . Zb) +( (Z,) 2)’0)

minimizes the cost function J: 2619 20—0




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Yo h(Tb)
From a 3D-Var point of view, (T, —T, )’ (h(T,)-y, )?
we want to find a T, that J(T,)= st 5
minimizes the cost function J: 2619 260

This analysis temperature T is closest to both the
forecast T, and the observation y, and maximizes the
likelihood of T_~T,,,, given the information we have.

a

It is easier to find the analysis increment T_-T, that
minimizes the cost function J



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Yo h(Tb)
From a 3D-Var point of view, (T, —T, )’ (h(T,)-y, )?
we want to find a T, that J(T,)= st 5
minimizes the cost function J: 2619 260

The cost function is derived from a maximum likelihood analysis:



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,
Innovation: Yo ™ h(Tb)

2 2
From a 3D-Var point of view, J(T) = (Ta _ Tb) + (h(Ta) _ yo)
we want to find a T, that ’ 20, 20°
minimizes the cost function J:
2
ruth Tb) :|

1. p[ (1,
X J—
V27o, 20,

Likelihood of T, , given T,:



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,
Innovation: Yo ™ h(Tb)

2 2
From a 3D-Var point of view, J(T)= d,~1,) + (MI,)-y,)
we want to find a T, that ’ 20, 20°
minimizes the cost function J: _ i}

Likelihood of T, .. given T,: ! ex (Ttrurh _Tb)2
e i J2ro, P 20,
- -
Likelihood of h(T,,;) given v L oy (W(T,,)= )
V21O, 207




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Yo ™ h(Tb)
From a 3D-Var point of view, T —TYY (WT )=V )
we want to find a T, that 2]min=( s Zb) +( ( a)z Vo)
minimizes the cost function J: 0, O,
. . . . 1 . (Zruth o Tb )2
Likelihood of T, ,, given T,: \/Eo-b €Xp 207
| 4
Likelihood of A(T,,) giveny: 1 (T, =)
V2ro, 20°
Joint likelihood of T, | (T, T, )2 (W(T,,, )~ yo)z

ex
V27mo, b 20, 20°

(0]

Minimizing the cost function maximizes the likelihood of the
estimate of truth




Toy temperature data assimilation, variational approach

Again, we have a forecast T, and a radiance obs Y, = /(1)) + &
Innovation: Yo — h(Tb)

We want to find (T,-T,) that (T,-T,) (WT)-y)
minimizes the cost function J. min o2 o2
This maximizes the likelihood of ’ ?
T.~Tun 9given both 7, and y,




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &

Innovation: Yo — h(Tb)
We want to find (7,-T,) that , ,
minimizes the cost function J. T )= T, -7, (WT,)—y,)
This maximizes the likelihood of ( a) - 2 T 2

20, 20

T ~T,un 9given both 7, and y,

To find the minimum we use an WT)-y =hT)-y, +HT, —-T,)
incremental approach: find 1, =7, :

So that from oJ /o(T,—T,)=0  we get

| H> 1 (y. — h(T,))
(Ta_Tb){_z_i_ 2]=(Ta_Tb) >=H 2 2 ’
Gb 60 O-a Go




Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Y, = T},)
From a 3D-Var point of view, (T,-T, )’ (h(T)-y,)
we want to find (T,-T,) that J(T,)= > T >

20, 20

minimizes the cost function J.

To find the minimum we use an WT)-y =hT)-y, +HT, —-T,)
incremental approach: find 1, =7, :

So that from oJ /o(T,—T,)=0  we get

2

(T, —Tb)(iz+ H2 ]: (T,-T,) 12 —H (5, _}Z(Tb))
0O, O, O, o’
or T,=T,+w(y,—hT,)) rorenow

_ P N ]
w=(0,"+Ho,'H) Ho, =0.Ho,’



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &,

Innovation: Yo h(Tb)
. 2 . 2
3D-Var: T, minimizes the distance to both  2J = (7, 2Tb) + (h(T,) . Y,)
the background and the observations O, o,
3D-Var

. _ -2 -2 -1 -2 2 )
solution La =T, +w(y, = h(T),)) with w = (Gb +Ho, H) Ho, =0,Ho,



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &

Innovation: Yo h(Tb)
. 2 . 2
3D-Var: T, minimizes the distance to both  2J = (7, ZTb) + (h(T,) . Y,)
the background and the observations O, o,
3D-Var

_( ~2 277\! 2 _ 2 )
solution Lo =1, + w(y, — h(T, ))with"sp-var = (Gb +Ho, H) Ho, =0,Ho,

This variational solution is the same as the one obtained before with Kalman
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)):

2 2 2 2\—
KFIOl T =T, +w(y, —h(T,)) with Wor =0,H(0,+0,H")"
solution



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Yo ~ W)+ &

Innovation: Yo h(Tb)
. 2 o 2
3D-Var: T, minimizes the distance to both  2J = (7, ZTb) + (h(T,) . Y,)
the background and the observations O, o,
3D-Var

_(~2 277\! 2 _ 2 )
solution Lo =1, + w(y, — h(T, ))with"sp-var = (Gb +Ho, H) Ho, =0,Ho,

This variational solution is the same as the one obtained before with Kalman
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)):

2 2 2 2\—
KFIOl T =T, +w(y, —h(T,)) with Wor =0,H(0,+0,H")"
solution

Show that the 3d-Var and the OI/KF weights are the same:
both methods find the same optimal solution!



00 UTC 06 UTC 12 UTC

Observations (Observations) Observations
i |—| Analrsis || Analysis

Initializatic Initialization |

H

| Initialization

Typical 6-hour analysis cycle.

Forecast phase, followed by Analysis phase



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from t,to t., - T, =m|T, )]

Forecasterror:  €,(¢,,,)=1,(¢,,,)—T,(t, )=
m[Ta (tl)] o m[]-;(tl)] T 8m (ti+1) — Mga (tl) + 8m (ti+1)
So that we can predict the forecast error variance

Glf (t,)= MzGZ (1)+0Q; O = 8;31 (¢:1)

(The forecast error variance comes from the analysis and model errors)




Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from t,to t., - T, =m|T, )]

Forecasterror:  €,(¢,,,)=1,(¢,,,)—T,(t, )=
m[Ta (tl)] o m[]-;(tl)] T 8m (ti+1) — Mga (tl) + gm (ti+1)
So that we can predict the forecast error variance

sz (t:01) = MzGi (t)+0;5 Q= gjz (tii1)

(The forecast error variance comes from the analysis and model errors)

Now we can compute the optimal weight (KF or Var, whichever form is
more convenient, since they are equivalent):

w=o,H(c. +Ho,H)" = (0, + HGO_ZH)_l Ho’



Toy temperature analysis cycle (Kalman Filter)

Analysis phase: we use the new observation Y, (Z:11)

compute the new observational increment vt )~ h(Tb (fm))

and the new analysis:

T, () =T, () ¥ Wi | 3, = B(T, (1) |

We also need the compute the new analysis error variance:

2 2 )
from o, =0, +Ho H

0’0;

2 _ o b . 2 2

we get Ga (ti+1) — 2 H2 2 - (1 _ Wi+1H)Gbi+1 < Gbi+1
GO + Gb il

now we can advance to the next cycle t,-+2 ) t,-+3 T



Summary of toy Analysis Cycle (for a scalar)

T,,)=m|T,@)]  o,t.)=M|clt)] M =0m /T
Interpretation...

“We use the model to forecast T, and to
update the forecast error variance from ¢. to ¢, ,

””



Summary of toy Analysis Cycle (for a scalar)

T, =m[T,@)]  olt.)=M]c2()] M =0m /T

“We use the model to forecast T, and to
update the forecast error variance from ¢, to ..,

””

At Lin T, =T, +w[y0 —h(Tb)]

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:



Summary of toy Analysis Cycle (for a scalar)

T, =m[T,@)]  olt.)=M]c2()] M =9m/dT

“We use the model to forecast 7, and to
update the forecast error variance from ¢, to ..,

””

At Lin T, =T, +w[y0 —h(Tb)]

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:

w=0,H(o.+Ho,H)"

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance. H = 0h / dT ensures that the magnitudes and units
are correct.”



Summary of toy Analysis Cycle (for a scalar)
w=0,H(o.+Ho,H)"

“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance. H = dh /dT ensures that the magnitudes and units
are correct.”

Note that the larger the background error variance, the
larger the correction to the first guess.



Summary of toy Analysis Cycle (for a scalar)

The analysis error variance is given by

2 .2
2 ( Go Gb

O =
o’ +H’0;

a

]: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”



Summary of toy system equations (cont.)

The analysis error variance is given by

2 .2
2 ( Go Gb

O =
o’ +H’0;

a

]: (1-wH)o;

“The analysis error variance is reduced from the background
error by a factor (1 - scaled optimal weight)”

This can also be written as

0= (Gb_z + (70_2H2)

a

“The analysis precision is given by the sum of the background
and observation precisions”



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-10°



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

We have to replace scalars (obs, fcasts, analyses) by vectors
Tbﬁxb; Taﬁxa; y()%y();
and their error variances by error covariances:

o,—>B;, 0. >A; o —R;



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-108

We have to replace scalars (obs, forecasts) by vectors
Tbﬁxb; Taﬁxa; y()%y();
and their error variances by error covariances:

o,—>B;, 0. >A; o —R;



Interpretation of the NWP system of equations

’”

“We use the model to forecast from ¢, to ..,
X,(t.,)=M|X, (ti)]

At 1., x,=x,+ K:yo - H(Xb)]



Interpretation of the NWP system of equations

’”

“We use the model to forecast from ¢, to ..,
X,(t.,)=M|X, (ti)]

At Livi X =X, +K:y0 = H(Xb):l

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"



Interpretation of the NWP system of equations

’”

“We use the model to forecast from ¢, to ..,
X,(t.,)=M|X, (ti)]

At Livi Xa=Xb+K:yO—H(Xb):|

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K=BH (R+HBH")"

“The optimal weight is the background error covariance divided by
the sum of the observation and the background error covariance.
H = 0H / dx ensures that the magnitudes and units are correct.
The larger the background error covariance, the larger the
correction to the first guess.”



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from ¢, to ¢, ”

I+1
x,(t.,)=M|x,(t)]



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from ¢, to 7,,, ”

I+1
x,(t.,)=M|x,(t)]

“We use the linear tangent model and its adjoint to
forecast B”

B(z,,,)=M|A(,)|M’



Interpretation of the NWP system of equations

Forecast phase:
“We use the model to forecast from ¢, to 7,,, ”

i+1
X, (t,,)=M [Xa (ti)]

“We use the linear tangent model and its adjoint to
forecast B”

B(z,,,)=M|A(,)|M’

“However, this step is so horrendously expensive that it
makes Kalman Filter completely unfeasible”.

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of forecasts.”



Summary of NWP equations (cont.)
The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A"'=B"'+H'R'H

“The analysis precision is given by the sum of the background
and observation precisions”



Summary of NWP equations (cont.)

The analysis error covariance is given by
A=(I-KH)B

“The analysis covariance is reduced from the background
covariance by a factor (I - scaled optimal gain)”

This can also be written as
A" =B"+H'RH
“The analysis precision is given by the sum of the background
and observation precisions”
K=BH' (R+HBH')'=B'+H'R'H)'H'R"'
“The variational approach and the sequential approach are

solving the same problem, with the same K, but only KF (or
EnKF) provide an estimate of the analysis error covariance”



Comparison of 4-D Var and LETKF at JMA
18th typhoon in 2004, IC 12Z 8 August 2004
T. Miyoshi and Y. Sato
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2"d part: Comparison of 4D-Var/SV and LETKF/BVs

Lorenz (1965) introduced (without using their current
names) all the concepts of: Tangent linear model,
Adjoint model, Singular vectors, and Lyapunov
vectors for a low order atmospheric model, and their
consequences for ensemble forecasting.

He also introduced the concept of “errors of the
day”: predictability is not constant: It depends on the
stability of the evolving atmospheric flow (the basic
trajectory or reference state).



When there is an instability, all perturbations converge towards
the fastest growing perturbation (leading Lyapunov Vector). The
LLV is computed applying the linear tangent model L on each
perturbation of the nonlinear trajectory

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

leading local

Lyapunov vector
random initial
perturbations



When there is an instability, all perturbations converge towards
the fastest growing perturbation (leading Lyapunov Vector). The
LLV is computed applying the linear tangent model L on each
perturbation of the nonlinear trajectory

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

leading local

Lyapunov vector
random initial
perturbations



Bred Vectors: nonlinear generalizations of
Lyapunov vectors, finite amplitude, finite time

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

leading local

Lyapunov vector
random initial
perturbations




Two initial and final BV (24hr)

contours: 3D-Var forecast errors, colors: BVs

The BV (colors) have shapes similar to the forecast
errors (contours)



SV: Apply the linear tangent model
forward in time to a ball of size 1
v, are the initial singular vectors

u, are the final singular vectors
O, are the singular values

Lv.=0.u,

Fig. 6.3: Schematic of the application of the TLM to a sphere
of perturbations of size 1 for a given interval (to,t1).

oy

V) /-—\ /‘}
|"//_ \ G u V\
|| L) Vi

N § /

» The ball becomes an ellipsoid, with each final SV u;
multiplied by the corresponding singular value ©O; .
 Both the initial and final SVs are orthogonal.



If we apply the adjoint model backwards
in time
v, are the initial singular vectors

T . .
L U, = O,;V. uare the final singular vectors
O, are the singular values

Fig. 6.4: Schematic of the application of the adjoint of the
TLM to a sphere of perturbations of size 1 at the final time.

* The final SVs get transformed into initial SVs, and are also
multiplied by the corresponding singular value o, .



Apply both the linear and the adjoint
models

. . 5 So that v, are the elgenvectors
L'Lv,=ocL'u,=0;v, of 'L and 0] areits
eigenvalues (smgular values)

Fig. 6.5: Schematic of the application of the TLM forward in
time followed by the adjoint of the TLM to a sphere of
perturbations of size 1 at the initial time.
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Conversely, apply the adjoint model first
and then the TLM

Fig. 6.6: Schematic of the application of the adjoint of the
TLM backward in time followed by the TLM forward to a
sphere of perturbations of size 1 at the final time.
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More generally,

A perturbation is advanced from t to t,, Yo = Lyn

Find the final size with a final norm P:

vl = ®y,..) ®Py,.)=y L'P'PLy,

This is subject to the constraint that all the initial
perturbations being of size 1 (with some norm W that
measures the initial size): yszWyn —1

The initial leading SVs depend strongly on the initial
norm W and on the optimization period T =t __ -t



QG model: Singular vectors using either
enstrophy/streamfunction initial norms (12hr)

Initial SV with enstrophy norm

_INIT ENSV (PV,2=3)

TAU=12hrs(LAN)

Initial SV with streamfunction norm

Initial SVs are
very sensitive
to the norm

Final SV with enstrophy norm

4 1 : :
\

Final SVs look
like bred vectors
(or Lyapunov
vectors)

(Shu-Chih Yang)



Two initial and final SV (24hr, vorticity? norm)
contours: 3D-Var forecast errors, colors: SVs

INIT SV1 sigma~2=2815 FINAL SV1

INIT SvV2 sigma~2=1035 FINAL Sva

With an enstrophy norm, the initial SVs have large scales,
by the end of the”optimization” interval, the final SVs look
like BVs (and LVs)



How to compute nonlinear, tangent linear and adjoint
codes:

Lorenz (1963) third equation: | X3 = X%, —bx;

Nonlinear model, forward in time

M

X,(t+ At)=x,(t) +[x,(1)x,(t) — bx,(2)]At

The nonlinear model is used directly by BVs and by EnKF



Example of nonlinear, tangent linear and adjoint codes:

Lorenz (1963) third equation: | X3 = X%, —bx;

Nonlinear model, forward in time

X,(t+ At)=x,(t) +[x,(1)x,(t) — bx,(2)]At

Tangent linear model, forward in time
Ox ,(t + At) = 0x,(t)+[x,(t)0x ,(2) + x,(t)Ox, (1) — bOx, (1) At

The TLM is needed to construct the adjoint model
LT. Linearizing processes like convection is very
hard!



Example of nonlinear, tangent linear and adjoint codes:

Lorenz (1963) third equation:

X, = x,x,—bx,

Nonlinear model, forward in time

X,(t+ At)=x,(t) +[x,(1)x,(t) — bx,(2)]At

Tangent linear model, forward in time

Ox ,(t + At) = 0x,(t)+[x,(t)0x ,(2) + x,(t)Ox, (1) — bOx, (1) At

In the adjoint model the above line becomes

Ox,(t) = 8x,(t) + (1 — bAt)Ox,(t + At)
Ox, (1) = 6x, () + (x, (1) At)Ox, (¢t + At)
Ox, () = 6x, (t) + (x,(t)At)Sx, (¢ + At)
Sx,(t+At)=0

backward in time




SVs summary and extra properties

To obtain the SVs we need the TLM and the ADJ
models.

The leading SVs are obtained by the Lanczos
algorithm.

One can define an initial and a final norm (size), this
gives flexibility (and arbitrariness, Ahlquist, 2000).

The leading initial SV is the vector that will grow
fastest (starting with a very small initial norm and
ending with the largest final norm).

The leading SVs grow initially faster than the
Lyapunov vectors, but at the end of the period, they
look like LVs (and bred vectors always look like LVSs).

The initial SVs are very sensitive to the norm used.
The final SVs look like LVs~BVs.



4D-Var

The 3D-Var cost function J(x) is generalized to include observa

| at different times:
cT evious forecast
/// /”— B EL\:A
,’ _ 7’ 19
~-Y___--- 7 corrected forecast
5XO ~X_ - - ’/
5, Find the smallest initial
: , . .~ perturbation such that its forecast
t t ¢  best fits the observations within
0

the assimilation interval

assimilation window

Minimize the 4D-Var cost function for the initial perturbation:
N
J(6%,)= %5X€B515X0 + %Z[(HiL(tO 1)8%,—d) R (HL(,.t,)6x,—d,) |
i=1

We are looking for the smallest initial perturbation that will

grow close to canceling the observational increments
di =Y _Hi(X(ti))



4D-Var

The 3D-Var cost function J(x) is generalized to include observa

| at different times:
S evious forecast
/// /”— B EL\:A
L7 v
~-Y___--- 7 corrected forecast
5X0 ~X_ -—— ’/
. Find the smallest initial
, . . ~ perturbation such that its forecast
t t ¢  best fits the observations within
0

the assimilation interval

assimilation window

Minimize the 4D-Var cost function for the initial perturbation:
N
J(6%,)= %5X€B515X0 + %Z[(HiL(tO 1)8%,—d) R (HL(,.t,)6x,—d,) |
i=1

It is evident that the solution to this variational problem will be
dominated by the leading singular vectors with initial norm Bgl




Analyses and forecasts at the end of a window
Colors: Forecast errors (left), Analysis errors (right)
Contours: Analysis errors

(¢) Feat error (LETKF) (d) Ana error (LETKF)

LETKF

4D-Var-12hr
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At the end of the assimilation window, the 4D-Var and LETKF
corrections are clearly very similar.
What about at the beginning of the assimilation window?

4D-Var is already a smoother, we know the initial corrections.
We can use the “no- cost” LETKF smoother to obtain the

7 (c) F‘cst error (LE‘I‘ICF‘)

(d) Ana error (LETKF)

5 10 15 20 25 2 35 40 < a0 55 40

(e) Foat error (4D12H)

5 10 15 22 26 97 95 <D 45 50 35 O

{f) Ana error (4D12H)

5 10 15 20 £5 M 05 40 <5 A0 55 a0

——

5 10 15 220 BS 47 05 <5 45 50 35 6

003 G025 VoY 2016 0.0L 0.00B¢G.036 UD.IL 2016 002 0.026 0.0;.;-

LETKF

4D-Var-12hr



No cost smoother for the LETKF

tn-l time n

The optimal ETKF weights are obtained at the end of the window,
but they are valid for the whole window. We can estimate the 4D-
LETKF at any time, simply by applying the weights at that time.



Initial and final analysis corrections
(colors), with one BV (contours)

LETKF

4D-Var-12hr

Initial increments

Final increments
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Summary

Bred Vectors, like leading Lyapunov vectors are norm-
iIndependent.

Initial Singular Vectors depend on the norm.

4D-Var is a smoother: it provides an analysis throughout the
assimilation window.

We can define a “No-cost” smoother for the LETKF.
Applications: Outer Loop and “Running in Place”.
Comparisons: 4D-Var and LETKF better than 3D-Var.
Analysis corrections in 3D-Var: missing errors of the day

Analysis corrections in 4D-Var and LETKF are very similar at
the end of the assimilation window.

Analysis corrections at the beginning of the assimilation
window look like bred vectors for the LETKF and like norm-
dependent leading singular vectors for 4D-Var.
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