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First part: 
•  Forecasting the weather - we are really getting better! 
•  Why: Better obs? Better models? Better data assimilation? 
•  Intro to data assim: a toy scalar example 1, we measure with 
two thermometers, and we want an accurate temperature. 
•  Another toy example 2, we measure radiance but we want an 
accurate temperature: we derive OI/KF, 3D-Var, 4D-Var and 
EnKF for the toy model. 
•  The equations for the huge real systems are the same as for 
the toy models. 
Second Part: Compare 4D-Var and EnKF in a QG model 
•  4D-Var increments evolve like Singular Vectors 
•  LETKF increments evolve like Lyapunov Vectors (~Bred Vs) 
•  Initial 4D-Var increments are norm dependent, not realistic  
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Comparisons verifying  
forecasts against observations 

1-day forecasts, 850hPa, NH, verification of wind 



1-day forecast 500hPa Z, NH 



3-day forecast, 500hPa, NH against observations  



5-day forecast, 500hPa, NH, 12 month average  



Satellite radiances are essential in the SH 



Intro. to data assim: toy example 1 summary 

1
σ a
2 =

1
σ b
2 +

1
σ o
2

 If the statistics of the errors are exact, and if the coefficients 
are optimal, then the "precision" of the analysis (defined as 
the inverse of the variance) is the sum of the precisions of 
the measurements. 

A forecast b and an observation o optimally combined (analysis): 

Second toy example of data assimilation including remote 
sensing. 

The importance of these toy examples is that the equations are 
identical to those obtained with big models and many obs. 

Ta = Tb +
σ b
2

σ b
2 +σ o

2 (To − Tb ) with 



Intro. to remote sensing and data 
assimilation: toy example 2 

•  Assume we have an object, like a stone in space 
•  We want to estimate its temperature T (oK) accurately but we 
measure the radiance y (W/m2) that it emits. We have an obs. 
model, e.g.:  
  y = h(T )  σT

4



Intro. to remote sensing and data 
assimilation: toy example 2 

•  Assume we have an object, a stone in space 
•  We want to estimate its temperature T (oK) accurately but we 
can only measure the radiance y (W/m2) that it emits. We have 
an obs. model, e.g.:  
 
•  We also have a forecast model for the temperature 
T (ti+1) = m T (ti )[ ];   

e.g., T (ti+1) = T (ti ) + Δt SW heating+LW cooling[ ]

 y = h(T )  σT
4
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•  We will derive the data assim eqs (KF and Var) for this toy 
system (easy to understand!) 
 

T (ti+1) = m T (ti )[ ];   

e.g., T (ti+1) = T (ti ) + Δt SW heating+LW cooling[ ]

 y = h(T )  σT
4



Intro. to remote sensing and data 
assimilation: toy example 2 

•  Assume we have an object, a stone in space 
•  We want to estimate its temperature T (oK) accurately but we 
measure the radiance y (W/m2) that it emits. We have an obs. 
model, e.g.:  
 
•  We also have a forecast model for the temperature 

•  We will derive the data assim eqs (OI/KF and Var) for this toy 
system (easy to understand!) 
•  Will compare the toy and the real huge vector/matrix 
equations: they are exactly the same! 

T (ti+1) = m T (ti )[ ];   

e.g., T (ti+1) = T (ti ) + Δt SW heating+LW cooling[ ]

 y = h(T )  σT
4



Toy temperature data assimilation, measure radiance 

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + ε0

yo − h(Tb )

The new information (or innovation) is the 
observational increment: 



Toy temperature data assimilation, measure radiance 

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + ε0

yo − h(Tb )

The new information (or innovation) is the 
observational increment: 

The final formula is very similar to that in toy model 1: 

Ta = Tb + w(yo − h(Tb ))
with the optimal weight w = σ b

2H (σ o
2 + Hσ b

2H )−1

Recall that Ta = Tb + w(yo − h(Tb )) = Tb + w(εo − Hεb )

So that, subtracting the truth,  εa = εb + w(εo − Hεb )



Toy temperature data assimilation, measure radiance 

Summary for Optimal Interpolation/Kalman Filter (sequential):  

Ta = Tb + w(yo − h(Tb ))

with  w = σ b
2H (σ o

2 +σ b
2H 2 )−1

The analysis error is obtained from squaring 

σ a
2 = εa

2 = (1− wH )σ b
2 =

σ o
2

σ o
2 +σ b

2H 2 σ b
2

It can also be written as 

1
σ a
2 =

1
σ b
2 +

H 2

σ o
2

⎛
⎝⎜

⎞
⎠⎟

analysis 

optimal weight 

analysis precision= 
forecast precision + observation precision 

εa = εb + w εo − Hεb[ ]



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

This analysis temperature Ta is closest to both the 
forecast Tb and the observation yo and maximizes the 
likelihood of Ta~Ttruth given the information we have. 

It is easier to find the analysis increment Ta-Tb that 
minimizes the cost function  J 

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

The cost function is derived from a maximum likelihood analysis:  

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Likelihood of Ttruth given Tb:  
1
2πσ b

exp −
(Ttruth − Tb )

2

2σ b
2

⎡

⎣
⎢

⎤

⎦
⎥

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Likelihood of Ttruth given Tb:  
1
2πσ b

exp
Ttruth − Tb( )2
2σ b

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Likelihood of h(Ttruth) given yo:  1
2πσ o

exp −
h(Ttruth ) − yo( )2

2σ o
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2



From a 3D-Var point of view, 
we want to find a Ta  that 
minimizes the cost function J: 

2Jmin =
(Ta − Tb )

2

σ b
2 +

(h(Ta ) − yo )
2

σ o
2

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Likelihood of Ttruth given Tb:  
1
2πσ b

exp −
Ttruth − Tb( )2
2σ b

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Likelihood of h(Ttruth) given yo:  1
2πσ o

exp −
h(Ttruth ) − yo( )2

2σ o
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Joint likelihood of Ttruth:  1
2πσ b

exp −
Ttruth − Tb( )2
2σ b

2 −
h(Ttruth ) − yo( )2

2σ o
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Minimizing the cost function maximizes the likelihood of the  
estimate of truth 



We want to find (Ta -Tb) that 
minimizes the cost function J. 
This maximizes the likelihood of 
Ta~Ttruth given both Tb and yo 

2Jmin =
(Ta − Tb )

2

σ b
2 +

(h(Ta ) − yo )
2

σ o
2

Toy temperature data assimilation, variational approach 

Again, we have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 



So that from 

To find the minimum we use an 
incremental approach: find           : 

(Ta − Tb )
1
σ b
2 +

H 2

σ o
2

⎛
⎝⎜

⎞
⎠⎟
= (Ta − Tb )

1
σ a
2 = H

(yo − h(Tb ))
σ o
2

h(Ta ) − yo = h(Tb ) − yo + H (Ta − Tb )

∂J / ∂(Ta − Tb ) = 0 we get 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2

Ta − Tb

We want to find (Ta -Tb) that 
minimizes the cost function J. 
This maximizes the likelihood of 
Ta~Ttruth given both Tb and yo 



From a 3D-Var point of view, 
we want to find (Ta -Tb) that 
minimizes the cost function J. 

So that from 

To find the minimum we use an 
incremental approach: find           : 

(Ta − Tb )
1
σ b
2 +

H 2

σ o
2

⎛
⎝⎜

⎞
⎠⎟
= (Ta − Tb )

1
σ a
2 = H

(yo − h(Tb ))
σ o
2

h(Ta ) − yo = h(Tb ) − yo + H (Ta − Tb )

∂J / ∂(Ta − Tb ) = 0 we get 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

J(Ta ) =
(Ta − Tb )

2

2σ b
2 +

(h(Ta ) − yo )
2

2σ o
2

Ta − Tb

or  

w = σ b
−2 + Hσ o

−2H( )−1Hσ o
−2 = σ a

2Hσ o
−2

Ta = Tb + w yo − h(Tb )( ) where now 



3D-Var: Ta minimizes the distance to both 
the background and the observations 

2Jmin =
(Ta − Tb )

2

σ b
2 +

(h(Ta ) − yo )
2

σ o
2

w = σ b
−2 + Hσ o

−2H( )−1Hσ o
−2 = σ a

2Hσ o
−2with 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Ta = Tb + w(yo − h(Tb ))
3D-Var 
solution 



3D-Var: Ta minimizes the distance to both 
the background and the observations 

2Jmin =
(Ta − Tb )

2

σ b
2 +

(h(Ta ) − yo )
2

σ o
2

w3D−Var = σ b
−2 + Hσ o

−2H( )−1Hσ o
−2 = σ a

2Hσ o
−2

with 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Ta = Tb + w(yo − h(Tb ))
3D-Var 
solution 

This variational solution is the same as the one obtained before with Kalman 
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)): 

KF/OI 
solution 

Ta = Tb + w(yo − h(Tb )) with wOI = σ b
2H (σ o

2 +σ b
2H 2 )−1



3D-Var: Ta minimizes the distance to both 
the background and the observations 

2Jmin =
(Ta − Tb )

2

σ b
2 +

(h(Ta ) − yo )
2

σ o
2

w3D−Var = σ b
−2 + Hσ o

−2H( )−1Hσ o
−2 = σ a

2Hσ o
−2

with 

Toy temperature data assimilation, variational approach 

We have a forecast Tb and a radiance obs yo = h(Tt ) + ε0
yo − h(Tb )Innovation: 

Ta = Tb + w(yo − h(Tb ))
3D-Var 
solution 

This variational solution is the same as the one obtained before with Kalman 
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)): 

KF/OI 
solution 

Ta = Tb + w(yo − h(Tb )) with wOI = σ b
2H (σ o

2 +σ b
2H 2 )−1

Show that the 3d-Var and the OI/KF weights are the same: 
both methods find the same optimal solution! 



Typical 6-hour analysis cycle 

Forecast phase, followed by Analysis phase 

Typical 6-hour analysis cycle 



Toy temperature analysis cycle (Kalman Filter) 

Forecasting phase, from ti to ti+1: Tb (ti+1) = m Ta (ti )[ ]

So that we can predict the forecast error variance  

Forecast error: εb (ti+1) = Tb (ti+1) − Tt (ti+1) =
m Ta (ti )[ ]− m Tt (ti )[ ] + εm (ti+1) = Mεa (ti ) + εm (ti+1)

σ b
2 (ti+1) = M

2σ a
2 (ti )+Qi; Qi = εm

2 (ti+1)
(The forecast error variance comes from the analysis and model errors) 



Toy temperature analysis cycle (Kalman Filter) 

Forecasting phase, from ti to ti+1: Tb (ti+1) = m Ta (ti )[ ]

So that we can predict the forecast error variance  

Now we can compute the optimal weight (KF or Var, whichever form is 
more convenient, since they are equivalent):  

Forecast error: εb (ti+1) = Tb (ti+1) − Tt (ti+1) =
m Ta (ti )[ ]− m Tt (ti )[ ] + εm (ti+1) = Mεa (ti ) + εm (ti+1)

σ b
2 (ti+1) = M

2σ a
2 (ti ) +Qi; Qi = εm

2 (ti+1)

w = σ b
2H (σ o

2 + Hσ b
2H )−1 = σ b

−2 + Hσ o
−2H( )−1Hσ o

−2

(The forecast error variance comes from the analysis and model errors) 



Toy temperature analysis cycle (Kalman Filter) 

Analysis phase: we use the new observation 

Ta (ti+1) = Tb (ti+1) + wi+1 yo(ti+1) − h Tb (ti+1)( )⎡⎣ ⎤⎦

we get  

We also need the compute the new analysis error variance: 

σ a
2 (ti+1) =

σ o
2σ b

2

σ o
2 + H 2σ b

2

⎛
⎝⎜

⎞
⎠⎟ i+1

= (1− wi+1H )σ b
2
i+1 < σ b

2
i+1

yo(ti+1)

σ a
−2 = σ b

−2 + Hσ o
−2H

now we can advance to the next cycle ti+2 , ti+3,...

compute the new observational increment  yo(ti+1) − h Tb (ti+1)( )
and the new analysis:  

from  



Summary of toy Analysis Cycle (for a scalar) 

“We use the model to forecast Tb and to 
update the forecast error variance from ti to          ” ti+1

Tb (ti+1) = m Ta (ti )[ ] σ b
2 (ti+1) = M

2 σ a
2 (ti )⎡⎣ ⎤⎦ M = ∂m / ∂T

Interpretation… 



Summary of toy Analysis Cycle (for a scalar)  

Ta = Tb + w yo − h Tb( )⎡⎣ ⎤⎦

“We use the model to forecast Tb and to 
update the forecast error variance from ti to          ” ti+1

Tb (ti+1) = m Ta (ti )[ ]

At ti+1
“The analysis is obtained by adding to the background the 
innovation (difference between the observation and the first 
guess) multiplied by the optimal weight: 

σ b
2 (ti+1) = M

2 σ a
2 (ti )⎡⎣ ⎤⎦ M = ∂m / ∂T



Summary of toy Analysis Cycle (for a scalar) 

Ta = Tb + w yo − h Tb( )⎡⎣ ⎤⎦

“We use the model to forecast Tb and to 
update the forecast error variance from ti to          ” ti+1

Tb (ti+1) = m Ta (ti )[ ]

At ti+1
“The analysis is obtained by adding to the background the 
innovation (difference between the observation and the first 
guess) multiplied by the optimal weight: 

w = σ b
2H (σ o

2 + Hσ b
2H )−1

“The optimal weight is the background error variance divided 
by the sum of the observation and the background error 
variance.                     ensures that the magnitudes and units 
are correct.” 

H = ∂h / ∂T

σ b
2 (ti+1) = M

2 σ a
2 (ti )⎡⎣ ⎤⎦ M = ∂m / ∂T



Summary of toy Analysis Cycle (for a scalar) 

w = σ b
2H (σ o

2 + Hσ b
2H )−1

“The optimal weight is the background error variance divided 
by the sum of the observation and the background error 
variance.                     ensures that the magnitudes and units 
are correct.” 

H = ∂h / ∂T

Note that the larger the background error variance, the 
larger the correction to the first guess. 



Summary of toy Analysis Cycle (for a scalar) 

σ a
2 =

σ o
2σ b

2

σ o
2 + H 2σ b

2

⎛
⎝⎜

⎞
⎠⎟
= (1− wH )σ b

2

The analysis error variance is given by 

“The analysis error variance is reduced from the background 
error by a factor (1 -  scaled optimal weight)” 



Summary of toy system equations (cont.)  

σ a
2 =

σ o
2σ b

2

σ o
2 + H 2σ b

2

⎛
⎝⎜

⎞
⎠⎟
= (1− wH )σ b

2

The analysis error variance is given by 

This can also be written as 

σ a
−2 = σ b

−2 +σ o
−2H 2( )

“The analysis precision is given by the sum of the background 
and observation precisions” 

“The analysis error variance is reduced from the background 
error by a factor (1 -  scaled optimal weight)” 



Equations for toy and real huge systems 

These statements are important because they hold true for 
data assimilation systems in very large multidimensional 
problems (e.g., NWP). 

Instead of model, analysis and observational scalars, we 
have 3-dimensional vectors of sizes of the order of 107-109 
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have 3-dimensional vectors of sizes of the order of 107-108 

Tb → xb; Ta → xa; yo → yo;

and their error variances by error covariances: 

σ b
2 → B; σ a

2 → A; σ o
2 → R;



Equations for toy and real huge systems 

These statements are important because they hold true for 
data assimilation systems in very large multidimensional 
problems (e.g., NWP). 

We have to replace scalars (obs, forecasts) by vectors 

Instead of model, analysis and observational scalars, we 
have 3-dimensional vectors of sizes of the order of 107-108 

Tb → xb; Ta → xa; yo → yo;

and their error variances by error covariances: 

σ b
2 → B; σ a

2 → A; σ o
2 → R;



Interpretation of the NWP system of equations 

xa = xb +K yo − H xb( )⎡⎣ ⎤⎦

“We use the model to forecast from   ti to ti+1
xb (ti+1) = M xa (ti )[ ]

At ti+1

” 
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guess) multiplied by the optimal Kalman gain (weight) matrix” 

K = BHT (R +HBHT )−1

” 



Interpretation of the NWP system of equations 

xa = xb +K yo − H xb( )⎡⎣ ⎤⎦

“We use the model to forecast from   ti to ti+1
xb (ti+1) = M xa (ti )[ ]

At ti+1

“The analysis is obtained by adding to the background the 
innovation (difference between the observation and the first 
guess) multiplied by the optimal Kalman gain (weight) matrix” 

K = BHT (R +HBHT )−1

“The optimal weight is the background error covariance divided by 
the sum of the observation and the background error covariance.                            

  ensures that the magnitudes and units are correct.  
  The larger the background error covariance, the larger the 
correction to the first guess.” 

H = ∂H / ∂x

” 



Interpretation of the NWP system of equations 

“We use the model to forecast from   ti to ti+1
xb (ti+1) = M xa (ti )[ ]

” 

Forecast phase: 



Interpretation of the NWP system of equations 

“We use the model to forecast from   ti to ti+1
xb (ti+1) = M xa (ti )[ ]

” 

Forecast phase: 

“We use the linear tangent model and its adjoint to 
forecast B”  

B(ti+1) =M A(ti )[ ]MT



Interpretation of the NWP system of equations 

“We use the model to forecast from   ti to ti+1
xb (ti+1) = M xa (ti )[ ]

” 

Forecast phase: 

“We use the linear tangent model and its adjoint to 
forecast B”  

B(ti+1) =M A(ti )[ ]MT

“However, this step is so horrendously expensive that it 
makes Kalman Filter completely unfeasible”.  

“Ensemble Kalman Filter solves this problem by estimating 
B using an ensemble of forecasts.”  



Summary of NWP equations (cont.)  

A = I −KH( )B
The analysis error covariance is given by 

“The analysis covariance is reduced from the background 
covariance by a factor (I -  scaled optimal gain)” 



Summary of NWP equations (cont.)  

A = I −KH( )B
The analysis error covariance is given by 

This can also be written as 

A−1 = B−1 +HTR−1H

“The analysis precision is given by the sum of the background 
and observation precisions” 

“The analysis covariance is reduced from the background 
covariance by a factor (I -  scaled optimal gain)” 



Summary of NWP equations (cont.)  

A = I −KH( )B
The analysis error covariance is given by 

This can also be written as 

A−1 = B−1 +HTR−1H

“The analysis precision is given by the sum of the background 
and observation precisions” 

“The analysis covariance is reduced from the background 
covariance by a factor (I -  scaled optimal gain)” 

K = BHT (R +HBHT )−1 = (B−1 +HTR−1H)−1HTR−1

“The variational approach and the sequential approach are 
solving the same problem, with the same K, but only KF (or 
EnKF) provide an estimate of the analysis error covariance” 



Comparison of 4-D Var and LETKF at JMA 
18th typhoon in 2004, IC 12Z 8 August 2004 

T. Miyoshi and Y. Sato 

  

operational LETKF 



Lorenz (1965) introduced (without using their current 
names) all the concepts of: Tangent linear model, 
Adjoint model, Singular vectors, and Lyapunov 
vectors for a low order atmospheric model, and their 
consequences for ensemble forecasting. 
  
He also introduced the concept of “errors of the 
day”: predictability is not constant: It depends on the 
stability of the evolving atmospheric flow (the basic 
trajectory or reference state).  

2nd  part: Comparison of 4D-Var/SV and LETKF/BVs 



When there is an instability, all perturbations converge towards 
the fastest growing perturbation (leading Lyapunov Vector). The 
LLV is computed applying the linear tangent model L on each 

perturbation of the nonlinear trajectory 

 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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LLV is computed applying the linear tangent model L on each 

perturbation of the nonlinear trajectory 

 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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Bred Vectors: nonlinear generalizations of 
Lyapunov vectors, finite amplitude, finite time 

 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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Two initial and final BV (24hr) 
contours: 3D-Var forecast errors, colors: BVs 

The BV (colors) have shapes similar to the forecast 
errors (contours) 



Lv i = σ iui

SV: Apply the linear tangent model 
forward in time to a ball of size 1 

vi are the initial singular vectors 
ui are the final singular vectors 
    are the singular values σ i

•  The ball becomes an ellipsoid, with each final SV ui 
multiplied by the corresponding singular value        . 
•  Both the initial and final SVs are orthogonal. 

σ i



If we apply the adjoint model backwards 
in time 

vi are the initial singular vectors 
ui are the final singular vectors 
    are the singular values σ i

LTui = σ iv i

•  The final SVs get transformed into initial SVs, and are also 
multiplied by the corresponding singular value        . σ i



Apply both the linear and the adjoint 
models 

So that vi are the eigenvectors 
of             and           are its 
eigenvalues (singular values) 

σ i
2LTLv i = σ iL

Tui = σ i
2v i LTL



Conversely, apply the adjoint model first 
and then the TLM 

LLTui = σ i
2ui



More generally,  
yn+1 = Lyn

Find the final size with a final norm P: 

yn+1
2 = (Pyn+1)

T (Pyn+1) = yn
TLTPTPLyn

This is subject to the constraint that all the initial 
perturbations being of size 1 (with some norm W that 
measures the initial size):    yn

TWTWyn = 1

A perturbation is advanced from tn to tn+1 

The initial leading SVs depend strongly on the initial 
norm W and on the optimization period T = tn+1-tn 



QG model: Singular vectors using either  
enstrophy/streamfunction initial norms (12hr) 

Initial SVs are 
very sensitive 
to the norm 

Final SVs look 
like bred vectors 
(or Lyapunov 
vectors) 

Initial SV with enstrophy norm Initial SV with streamfunction norm 

Final SV with enstrophy norm Final SV with streamfunction norm 

(Shu-Chih Yang) 



Two initial and final SV (24hr, vorticity2 norm) 
contours: 3D-Var forecast errors, colors: SVs 

With an enstrophy norm, the initial SVs have large scales, 
by the end of the”optimization” interval, the final SVs look 
like BVs (and LVs) 



How to compute nonlinear, tangent linear and adjoint 
codes: 

Nonlinear model, forward in time 

           x 3(t + Δt) = x3(t) + [x1(t)x 2 (t) − bx3(t)]Δt

Lorenz (1963) third equation:  x3 = x1x 2−bx3

M

The nonlinear model is used directly by BVs and by EnKF 



Tangent linear model, forward in time 

           

Example of nonlinear, tangent linear and adjoint codes: 

δx 3(t + Δt) = δx3(t) + [x2 (t)δx 1(t) + x1(t)δx2 (t) − bδx3(t)]Δt

Nonlinear model, forward in time 

           x 3(t + Δt) = x3(t) + [x1(t)x 2 (t) − bx3(t)]Δt

Lorenz (1963) third equation:  x3 = x1x 2−bx3

M

L 

The TLM is needed to construct the adjoint model 
LT.  Linearizing processes like convection is very 
hard! 



Tangent linear model, forward in time 

           

In the adjoint model the above line becomes 
 
                                                                                     
 
                                                                            backward in time 

Example of nonlinear, tangent linear and adjoint codes: 

δx 3(t + Δt) = δx3(t) + [x2 (t)δx 1(t) + x1(t)δx2 (t) − bδx3(t)]Δt

δx3
*(t) = δx3

*(t) + (1− bΔt)δx3
*(t + Δt)

δx2
*(t) = δx2

*(t) + (x1(t)Δt)δx3
*(t + Δt)

δx1
*(t) = δx1

*(t) + (x2 (t)Δt)δx3
*(t + Δt)

δx3
*(t + Δt) = 0

Nonlinear model, forward in time 

           x 3(t + Δt) = x3(t) + [x1(t)x 2 (t) − bx3(t)]Δt

Lorenz (1963) third equation:  x3 = x1x 2−bx3

M

L 

LT 



SVs summary and extra properties  
•  To obtain the SVs we need the TLM and the ADJ 

models. 
•  The leading SVs are obtained by the Lanczos 

algorithm. 
•  One can define an initial and a final norm (size), this 

gives flexibility (and arbitrariness, Ahlquist, 2000). 
•  The leading initial SV is the vector that will grow 

fastest (starting with a very small initial norm and 
ending with the largest final norm). 

•  The leading SVs grow initially faster than the 
Lyapunov vectors, but at the end of the period, they 
look like LVs (and bred vectors always look  like LVs). 

•  The initial SVs are very sensitive to the norm used. 
The final SVs look like LVs~BVs.  



4D-Var 

Find the smallest initial 
perturbation such that its forecast 
best fits the observations within 
the assimilation interval 

previous forecast 

xb 

assimilation window 
t0 tn ti 

¢ yo 

yo 
¢ ¢ yo 

corrected forecast 
xa 

The 3D-Var cost function J(x) is generalized to include observations 
at different times: 

Minimize the 4D-Var cost function for the initial perturbation: 

¢ yo 

J(δx0 ) =
1
2
δx0

TB0
−1δx0 +

1
2

HiL(t0,ti( )δx0 − di )TRi
−1 HiL(t0,ti( )δx0 − di )⎡⎣ ⎤⎦

i=1

N

∑
We are looking for the smallest initial perturbation that will 
grow close to canceling the observational increments 

di = yi
o − Hi (x(ti ))

δx0

δx0



4D-Var 

Find the smallest initial 
perturbation such that its forecast 
best fits the observations within 
the assimilation interval 

previous forecast 

xb 

assimilation window 
t0 tn ti 

¢ yo 

yo 
¢ ¢ yo 

corrected forecast 
xa 

The 3D-Var cost function J(x) is generalized to include observations 
at different times: 

Minimize the 4D-Var cost function for the initial perturbation: 

¢ yo 

J(δx0 ) =
1
2
δx0

TB0
−1δx0 +

1
2

HiL(t0,ti( )δx0 − di )TRi
−1 HiL(t0,ti( )δx0 − di )⎡⎣ ⎤⎦

i=1

N

∑

It is evident that the solution to this variational problem will be 
dominated by the leading singular vectors with initial norm  

δx0

δx0
B0

−1

B0
−1



LETKF 

4D-Var-12hr 

Analyses and forecasts at the end of a window 
Colors: Forecast errors (left), Analysis errors (right) 

Contours: Analysis errors 



At the end of the assimilation window, the 4D-Var and LETKF 
corrections are clearly very similar. 

What about at the beginning of the assimilation window? 

4D-Var-12hr 

4D-Var is already a smoother, we know the initial corrections. 
We can use the “no-cost” LETKF smoother to obtain the 
“initial” EnKF corrections.  

LETKF 



No cost smoother for the LETKF 

tn-1 
 

tn 
 

¢	
  

¢	
  

¢	
  

¢ 	
  
★	
  

The optimal ETKF weights are obtained at the end of the window, 
but they are valid for the whole window. We can estimate the 4D-
LETKF at any time, simply by applying the weights at that time. 
 

Kalnay et al, 2007b Tellus 



Initial and final analysis corrections 
(colors), with one BV (contours) 

4D-Var-12hr 

Initial increments 

Initial increments 

Final increments 

Final increments 

4D-Var-12hr 

LETKF LETKF 



Summary 
•  Bred Vectors, like leading Lyapunov vectors are norm-

independent. 
•  Initial Singular Vectors depend on the norm. 
•  4D-Var is a smoother: it provides an analysis throughout the 

assimilation window. 
•  We can define a “No-cost” smoother for the LETKF. 
•  Applications: Outer Loop and “Running in Place”. 
•  Comparisons: 4D-Var and LETKF better than 3D-Var. 
•  Analysis corrections in 3D-Var: missing errors of the day 
•  Analysis corrections in 4D-Var and LETKF are very similar at 

the end of the assimilation window. 
•  Analysis corrections at the beginning of the assimilation 

window look like bred vectors for the LETKF and like norm-
dependent leading singular vectors for 4D-Var. 
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