CSCAMM-DAS13 - Lecture 2

e LETKF — No-Cost Smoothing
e Runningin Place (RIP) (Kalnay & Yang, 2010)
 Lorenz model (Yang et al, 2012)
e Sinlaku typhoon (Yang et al, 2013)
e 7 years of ocean assimilation (Penny et al, 2013)
 Proposed coupled ocean-atmosphere model
* A new type of hybrid (Penny, under review)

Shu-Chih Yang, Takemasa Miyoshi, Steve Penny,

and Eugenia Kalnay
UMD Weather-Chaos Group: Kayo Ide, Brian Hunt, Ed Ott,

and students (Guo-Yuan Lien, Yan Zhou, Adrienne Norwood, Erin Lynch,
Yongjing Zhao, Daisuke Hotta, Travis Sluka)

Also: Y Ota, Juan Ruiz, C Danforth, M Peina, M Corazza, A. Carrassi




Promising new tools for the LETKF

1. Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay
and Hunt, MWR, 2012)

* |t extracts more information from observations by using them
more than once.

« Useful during spin-up (e.g., hurricanes and tornados).

* |t uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b.

* Typhoon Sinlaku (Yang et al., 2012)

 7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2012)
* VVery good results!



Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)
(a square root filter)

(Start with random
initial ensemble)

Observation ensemble

Observations

‘ ensemble [analyses

operator | observations’

Model

ensemble forecasts

* Model independent
(black box)

e Obs. assimilated
simultaneously at each
grid point

* 100% parallel

* No adjoint needed

* 4D LETKF extension
* Computes the weights
for the ensemble forecasts
explicitly



Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

The LETKF algorithm can be described in a single slide!



Local Ensemble Transform Kalman Filter (LETKF)

Globally: , )

Forecast step: X &= M Xﬂ_lj/f)

Analysis step: construct X% — I:Xb _ ¥’ | |Xb _ ib:l;
| | X

y, =&)Y =y -y |y -¥]

Locally: Choose for each grid point the observations to be used, and compute
the local analysis error covariance and perturbations in ensemble space:

P =[(K-1)I+YR'Y' | ; W =[(K - 1)P*]"

Analysis mean in ensemble space: w’ = P“YbTR_l(yO — yb)
and add to W fo get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of X% = X’W¥ + x’
Gathering the grid point analyses forms the new global analyses. Note that the

the output of the LETKF are analysis weights W* and perturbation analysis
matrices of weights W*. These weights multiply the ensemble forecasts.



No-cost LETKF smoother (x): apply at t,_, the same
weights found optimal at t. It works for 3D- or 4D-LETKF

4D-LETKF

time t

The no-cost smoother makes possible:

v Quasi Outer Loop (QOL)

v “Running in place” (RIP) for faster spin-up

v Use of future data in reanalysis

v Ability to use longer windows and nonlinear perturbations



No-cost LETKF smoother first
tested on a QG model: it works...

Analysis error of potential vorticity
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—— LETKF_ReXa

LETKF analysis ¥¢ — ¥/ /&
ranalysis =X + X' W
at time n 1 LETKF Analysis

“Smoother” reanalysis

RMS Error

Smoother analysis .

: _<f [ a
attimen-1 X , =X |+ Xn_lwn

Very simple smoother: apply the final weights at the

beginning of the window. It allows assimilation of future
data, and assimilating data more than once. 8



Running in Place: Spin-up with a QG model

. Analysis error of potential temperature
10 T T T T
—— Original LETKF (K=40) 1

——— Spin-up LETKF (Epsin=0.05, K=40) -
~——— Spin-up LETKF (Epsin=0.05, K=20) |
—— 4D-Var (12H) 1

RIP accelerates the
LETKF with uniform .
random initial EnKF SpIN-up
perturbations .

(e.g., hurricanes,
severe storms)

4D-Var with 3D-Var
vitial perturbations

10" -

RMS error

107 -

Spin-up depends on the initial perturbations, but RIP works well even with

uniform random perturbations. RIP becomes even faster than 4D-Var (blue).
9



Nonlinearities: “Quasi Outer Loop” (QOL)

Quasi Outer Loop: use the final weights to correct only the
mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the
ensemble on a more accurate nonlinear solution.

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF

+RIP
Window=8 steps 0.31 0.30 0.27
Window=25 steps 0.53 0.66 0.35

10



Nonlinearities, “QOL” and “Running in Place”

Quasi Outer Loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear

solution.

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF

+QOL
Window=8 steps 0.31 0.30 0.27
Window=25 steps 0.53 0.68 0.47

“Running in Place” smoothes both the analysis and the analysis
error covariance and iterates a few times... 11



Why RIP works: Results with a Linear model
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« RIP adapts to using an observation N-times by dividing the
spread by N: RIP converges to the regular optimal KF solution.

« The spin-up is faster and the analysis update is “softer” (in
small steps) rather than in large steps. 12



LETKF-RIP with real observations
(Typhoon Sinlaku, 2008)
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Typhoon center (X) RIP uses better the “limited observations”!
Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan)
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Observation impact on the forecast:
Without RIP

Observations impact at t=0 on the Observation impact with respect

forecast at time t to dropsondes (standard LETKF)
(Kalnay et al. 2012, Liu and Kalnay, 2008)
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Observation Impact for the first set of dropsondes

4-Day track prediction
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The effectiveness of the dropsonde data is greatly improved by RIP and the

negative impact shown in the control LETKF is much reduced.
2012/10/02@NTU



An application of LETKF-RIP to ocean data assimilation

Data Assimilation of the Global Ocean
using 4D-LETKF, SODA(OI) and MOM2

Steve Penny’ s thesis
defense

April 15, 2011

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin

Penny (now at UMD/NCEP) implemented the LETKF
with either IAU or RIP and compared it with SODA (QOl)
16



B: background
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RMSD (psu) (All vertical levels) B: background

A: analysis
7 years of Ocean Reanalysis
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Why is LETKF-RIP so much better than SODA or
LETKF-IAU for the ocean reanalysis?

 The ocean observations are too sparse for a
standard EnKF, or even OI/3D-Var with a short (5-
day) window.

 SODA and LETKF-IAU used a much longer window

(30 days) in order to hammer the system with the
available observations.

 LETKF-RIP uses a 5-day window but re-uses the
observations in order to extract more information.

19



Summary for LETKF-RIP (or QOL)

Kalman Filter is optimal for a linear, perfect model.

During spin-up, or when the ensemble perturbations grow
nonlinearly, EnKF is not optimal, since it does not extract
enough information from the observations.

The LETKF “no-cost” smoother (or, equivalently, any 4D-
EnKF) allows LETKF-RIP to use the observations more than
once, and thus extract much more information.

This shortens the spin-up and produces more accurate
forecasts with the same observations.

For linear models RIP converges to the same optimal KF
solution but with spread reduced by ~ N

For long windows and nonlinear perturbations, RIP advances
In smaller steps and approaches the true attractor more
“softly”. 20



GODAE Ocean View/WGNE Workshop 2013
19 March 2013

Data assimilation for the
coupled ocean-atmosphere

Eugenia Kalnay, Tamara Singleton, Steve Penny, Takemasa
Miyoshi, Jim Carton

Thanks to the UMD Weather-Chaos Group, to Daryl Kleist
and to the India Monsoon Mission



QOutline

Traditional approaches.

Thesis of Tamara Singleton (DA with toy coupled model).
The LETKF and Running in Place.

Steve Penny: 7 years ocean reanalysis.

Steve Penny: New EnKF-based hybrid.

Shaoging Zhang: GFDL coupled EnKF.

Our planned approach to coupled LETKF (India Monsoon
Mission)

Questions:

— Can we do a robust coupled SST analysis? SSH? Scatterometer winds?
— Should we do LETKF-RIP? Short windows for the ocean and atm.?
— Should we do Gaussian Transformation? (Lien et al.)

— Should we do Proactive QC with Ens. Fcst. Sens. to Obs. (EFSO)?

Discussion




Traditional approaches

“In a typical coupling scheme for an ocean-atmosphere model,
the ocean model passes SST to the atmosphere, while the
atmosphere passes back heat flux components, freshwater
flux, and horizontal momentum fluxes.” (Neelin, Latif & Jin,
1994)

SST in the ocean model is frequently nudged from Reynolds
SSTs, not assimilated from observations.

SSH may not be even be used.

The data assimilation windows are very different for the ocean
and the atmosphere.




Tamara Singleton’ s thesis 1

Data Assimilation Experiments with a
Simple Coupled Ocean-Atmosphere Model

Questions she addressed:

-- Which is more accurate: 4D-Var or EnKF?

-- Is it better to do an ocean reanalysis separately, or as a
single coupled system?

-- ECCO is a version of 4D-Var where both the initial state
and the surface fluxes are control variables. This allows
ECCO to have very long windows (decades) and estimate
the surface fluxes that give the best analysis.

Is ECCO the best approach for ocean reanalysis?




Simple Coupled Ocean-Atmosphere System

3 coupled Lorenz models: A slow “ocean”
component strongly coupled with a fast
“tropical atmosphere component”, in turn
weakly coupled with a fast “extratropical
atmosphere” (Pefia and Kalnay, 2004).

Model Parameter Definitions

Variables Description Values

C,C,,C, Coupling c,c, =1
coefficient c, = 0.08

T time scale 1=0.1

o, b,and r Lorenz 0=10, b=8/3,
parameters |and r=28

Kk, Uncentering | k,=10
parameters k,=-11

Extratropical atmosphere
X, =0(y, —x,)=c,(x, +k)
Ve = 1%, = Ve = X,2, = €, (¥, + k)
z, = x,y, — bz,

Tropical atmosphere
x, =00y, —x)—c(X+k)—c,(x,+k)

v, =rx,—y,—xz, +cY +k,)+c,(y, +k)

z, =Xxy —bz, + c.Z

Ocean
X=10(Y - X)—c(x, +k,)

Y =TrX =1 —1XZ +c(y, + k,)
Z=1XY —-1thZ +c_z,

Model State: [Xe,ye,Ze,Xt,yt,Zt,X,Y,Z]1




Simple Coupled Ocean-Atmosphere Model (Peina and Kalnay, 2004)

< —>
Coupling strength

Tropical Atmosphere

/ Ocean is vacillating
between a “normal
Extra- troplcal Atmosphere year” (lasts from ~3-8
‘ AT, years) and an “El Nino”

(lasts about a 1 year) """""""""" { : : £

g

Troplcal Ocean

We do OSSEs with this simple coupled model



Simple Coupled Ocean-Atmosphere Model (Peina and Kalnay, 2004)
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We do OSSEs with this simple coupled model



4D-Var/ETKF Data Assimilation Results

We developed a 4D-Var data assimilation system for the simple coupled
ocean-atmosphere model

We found that lengthening the assimilation window and applying QVA
improves the 4D-Var analysis.

Tuning the amplitude of the background error covariance has an impact
on the performance of the assimilation.

EnKF-based methods (LETKF & ETKF-QOL) compete with 4D-Var analyses
for short and long assimilation windows.

For much longer assimilation windows, 4D-Var outperforms the EnKF-
based methods

Short windows are good for ETKF
Long windows are good for 4D-Var
Optimal accuracy similar for 4D-Var and ETKF



ECCO-like 4D-Var

* The consortium for Estimating the Circulation and Climate of
the Ocean (ECCO) is a collaboration of a group of scientists from
the MIT, JPL, and the Scripps Institute of Oceanography

 The main characteristic of ECCO is that they include surface
fluxes as control variables.

— This allows them to have exceedingly long assimilation windows in 4D-
Var (e.g. 10 years or even 50 years).

— They used NCEP Reanalysis fluxes (Kalnay et al, 1996) as a first guess for
the surface fluxes.

e ECCO used 4D-Var to estimate the initial ocean state and
surface fluxes (Stammer et al., 2004; Kohl et al., 2007) in a 50-

year reanalysis with a single assimilation window!
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Comparison of ECCO-like & Ocean 4D-Var

QVA APPLIED OCEAN ONLY

Obs. s.d error = 1.41 for ocean

RMSE : Ocean State

—a—4D-Var

—<—ECCO 4D-Var
- = = =0Obs. Error

4D-Var (ocean only) fails

ECCO (ocean only) remains satisfactory
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Are the ECCO fluxes more accurate?

RMS Errors (Flux 3 Estimate)
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ECCO does not improve the flux estimates



Answers to the Research Questions

Questions:
-- Which is more accurate: 4D-Var or EnKF?
Fully coupled EnKF (with short windows) and 4D-Var (with long

windows) have about the same accuracy.




Answers to the Research Questions

Questions:

-- Is it better to do the ocean reanalysis separately, or as a single
coupled system?

Both EnKF and 4D-Var are similar and most accurate when
coupled, but uncoupled (ocean only) reanalyses are fairly good.



Answers to the Research Questions

Questions:

-- |Is ECCO 4D-Var with both the initial state and the surface

fluxes as control variables the best approach?
In our simple ocean model 4D-Var cannot remain accurate with

very long windows. Our ECCO reanalysis remained satisfactory
with very long windows but at the expense of less accurate
fluxes.



How about hybrids between Var and EnKF?

Hybrids have been very successful!l! (Kleist et al, 2013)

They increase the rank of B subspace from K (ensemble
size) to the size of the model.

So far hybrids have been created combining an existing Var
system with an ensemble to provide the flow dependence of
the background error covariance.

We would like to start with a well-developed EnKF (like
the LETKF) and add a simple local 3D-Var that provides
the full rank that the ensemble lacks.

Steve Penny (under revision) developed a simple, locally
Gaussian 3D-Var for this purpose, and tested the “hybrid/
mean” on the Lorenz-96, a 40 variable model.

He plots the analysis error as a function of the number of
ensemble members (2 to 40) and the number of
observations (1 to 40). (3DVar errors are shown as k=1).




Observation count (1)

An ensemble based hybrid with a simple local 3D-Var
(Steve Penny)
applied to the Lorenz 96 model

Standard LETKF

Mean absolute analysis error for standard LETKF
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This is the corner where we
are in ocean EnKF: too few
obs, too few ensembles

The total model dimension
Is K=40

The LETKF is extremely
accurate as long as
k>7, number of obs>7.



An ensemble based hybrid with a simple local 3D-Var
(Steve Penny)
applied to the Lorenz 96 model (hybrid/mean LETKF)

Standard LETKF Add a simple 3D-Var to LETK
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The hybrid/mean LETKF-simple 3D-Var is much more
robust for few ensemble members and few observations,
as they are for the ocean.
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An ensemble based hybrid with a simple local 3D-Var
(Steve Penny)
applied to the Lorenz 96 model (hybrid/mean LETKF)

Hybrid/covariance LETKF Hybrid/mean LETKF

vlean abs analysis error for Hybrid(Covariance)-LETKF alpha=0.2 (L96:F=20,dt=0.01) Mean abs analysis error for Hybrid(Mean)-LETKF alpha=0.5 (L96:F=20,dt=0.01)
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The hybrid/mean LETKF gives more accurate results than
the standard hybrid/covariance LETKF.

When alpha=0.5, the accuracy in regime 1 (dark blue)
decreases, but the total area of regime 1 increases.



S. Zhang et al.: GFDL Coupled
Ocean-Atm EnKF Data Assimilation

GHG + NA radiative forcing
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Basic idea for our coupled LETKF assimilation

Observations

observation
localization

Coupled Mode| ==

Thanks to
Miyoshi, Penny



Summary: ideas/questions for future
coupled ocean-atmosphere EnKF

Toy model: coupled assimilation and short windows are more
accurate for LETKF even if ocean has longer time scales.

Running in Place (RIP) extracts more information from the
observations and allows the use of shorter windows.

A new hybrid LETKF+simple 3D-Var would make the system
more robust with fewer ensemble members and observations.

For the coupled (India Monsoon Mission) CFS system, we will
test the use of 6hr (short) windows for the ocean as well as the
atmosphere assimilation.

Assimilate SST and SSH observations directly.

Localization of observations near the surface should allow for
atm.-ocean interaction through the background error covariance




Summary: ideas/questions for future
coupled ocean-atmosphere EnKF

Toy model: coupled assimilation and short windows are more
accurate for LETKF even if ocean has longer time scales.

Running in Place (RIP) extracts more information from the
observations and allows the use of shorter windows.

A new hybrid LETKF+simple 3D-Var would make the system
more robust with fewer ensemble members and observations.

For the coupled (India Monsoon Mission) CFS system, we will
test the use of 6hr (short) windows for the ocean as well as the
atmosphere assimilation.

Assimilate SST and SSH observations directly.

Localization of observations near the surface should allow for
atm.-ocean interaction through the background error covariance

Thanks!




