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Single Layer versus Bilayer

Γ

u=1

u=−1

Single-layer can not:
I open up a pore;

I pearl the interface;
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Fig. 4. Cluster-network model for Nafion membranes. The polymeric ions and absorbed 
electrolyte phase-separate from the fluorocarbon backbone into approximately spherical 

clusters connected by short narrow channels. The polymeric charges are most likely em- 
bedded in the solution near the interface between the electrolyte and fluorocarbon back- 

bone. This configuration minimizes both the hydrophobic interaction of water with the 

backbone and the electrostatic repulsion of proximate sulfonate groups. The dimensions 
shown were deduced from experiments, The shaded areas around the interface and inside 

a channel are the double layer regions from which the hydroxyl ions are excluded elec- 

trostatically. 

water content. The theory also suggests the short channels required by the 

cluster-network model to connect adjacent clusters are thermodynamically 

stable. 

Elastic model for cluster formation 

The starting point of our theory is a hypothetical dry cluster which con- 

tams NP ion exchange sites and which is imbedded in a swollen polymer, i.e., 

all the other hydrated clusters have been formed. We now consider the change 

in free energy associated with the growth of this hypothetical cluster with iVp 

held constant. Before hydration, the energetics of the dry cluster are described 

by the interactions listed in Table 2. NW is the number of water molecules 

which eventually will be absorbed by the cluster, do is the initial diameter of 

the dry cluster, G(c) is the tensile modulus of the swollen matrix with water 

content c, Bi are the strengths of each interaction, and A is a geometric con- 

stant of order unity. For the spherical geometry, A = (2/3) [6]. Note the 

interaction energy of the water molecules outside the membrane is explicitly 

taken into account. This is important because this term is necessary if we are 

to understand the variation in cluster diameter with the water content of the 

membrane. The validity of a continuum description of the elastic contribu- 

tion may not be obvious a priori, but good agreements between theory and 

data offer justification posteriorly. 

We now consider the hydrated cluster shown schematically in Fig. 5. There, 

Fig. 1.1. (Left) Cartoon of ionic cluster morphology of Nafion from [15]. The SO−
3 ions line the

spherical solvent phase which is depicted as a white void. (Middle) A typical lipid bilayer with polar
head groups exposed and hydrophobic tails point inward toward the center line. (Right) A spherical
liposome. The double arrow indicates the (occasional) exchange of lipids with the environment. The
ambient density of lipids in the background media is a key driver of the dynamics in the functionalized
Cahn-Hilliard model.

recognition that the solvent and ionic groups aggregate in the perfluorinated polymer
matrix to form a connected network that allows for efficient proton transport through
the nanometer-scale clusters.

For lipid bilayer membranes the solvent constitutes the predominant phase, and
the surfactant is the polar head-group of the lipid which is attached to a short hy-
drophobic chain. The hydrophobic groups agglomerate with the polar head-groups
pointing outwards so as to interact with the solvent, while the hydrophobic tails lie in
a solvent-excluded region. The classic morphology is the bilayer membrane, in which
two sheets of lipid align along a closed, co-dimension one hypersurface, see Figure 1.1
(middle). When the center-line hypersurface is closed, the resulting structure is called
a liposome, see Figure 1.1 (right). However the lipids can also assemble into cylindri-
cal, or pore-like structures, with the tails filling the interior, see Figure 1.2 (right), or
into spherical micelles, where again the tails fill the interior region.

In recent work, Budin and Szostak [1] investigated the dynamics and division of
primitive cellular membranes, comprised primarily of single-chain lipids. They de-
scribe the so-called ”phospholipid war” in which cells with higher concentrations of
phospholipids are more successful in attracting and retaining lipids from the ambient
environment. They propose that the resulting selective advantage would drive cells
to maximize their phospholipid content, leading them to more closely resemble mod-
ern cell membranes. They also propose a route for cell division in primitive cells, in
which they bifurcate cylindrical, or filamentous shaped protrusions, which can then
subsequently divide into smaller cells. The bifurcation from spherical bilayer (lipo-
some) to cylindrical pore is induced in Budin and Szostak’s experiments by varying
the background concentration of lipids. Motivated by these ideas we derive a curva-
ture driven sharp-interface flow for closed cylindrical pores under the functionalized
Cahn-Hilliard gradient flow, and investigate the competitive geometric evolution of
co-existing liposomes (closed bilayers) with closed cylindrical pores. We show that
the evolution is mediated through the common value of the surfactant phase (in this
context lipids) driving growth of one morphology over the other.

1.1. Description of the Functionalized Cahn Hilliard free energy. The
functionalized Cahn-Hilliard (FCH) free energy models the free energy of a mixture of
a surfactant phase and a solvent. It incorporates hydrophilic interactions by lowering
the free energy in response to the creation of surfactant-wetted surface area, however
it respects the molecular structure of the surfactant phase by penalizing surfactant

Figure: [K. Promislow, 2013](Left) A typical lipid bilayer with polar head
groups exposed and hydrophobic tails point inward toward the center
line. (Right) A spherical liposome.
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Functionalized Cahn-Hilliard Energy

We define the quadratic functionalization of F related to the local
balance |η̃| � 1 to be

F(u) =

∫

Ω

1

2

(
δE
δu

)2

dx − η̃ E(u)

=

∫

Ω

1

2

(
−ε2∆u + W

′
(u)
)2

− η̃
(
ε2

2
|∇u|2 + W (u)

)
dx

over some appropriate subspace of H2(Ω). Here E is the Cahn-Hilliard
Energy and W is a double well potential with wells at b±.

b
−

b
+
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The long-time evolution of a mass-preserving projection gradient
flow of the Functionalized Energy on a periodic domain Ω ∈ Rd for
d ≥ 2,

ut = −G δF
δu
,

u(x , 0) = u0(x).

where G is positive, self-adjoint operator whose only kernel is the
constant factor 1. Examples include the zero-mass projection Π0,

Π0f := f − 1

|Ω|

∫

Ω
f (x)dx ,

as well as the negative Laplacian −∆ subject to some
mass-preserving boundary condition.
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We are interested in the critical points of above equation,

G δF
δu

= 0

G
(
(ε2∆−W ′′(u) + η̃)(ε2∆u −W ′(u))

)
= 0.

We look for flat interface co-dimension one bi-layer solutions Φm,

(∂2
z −W ′′(Φm) + η̃)(∂2

z Φm −W ′(Φm)) = θ.

I For θ = 0, there are single-layer heteroclinic solutions seen in
the gradient flow of Cahn-Hilliard equation

φ′′ −W ′(φ) = 0

I But for 0 < |θ| � 1, the fourth order equation possesses a
rich family of homoclinic solutions (bilayer solutions).
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Gradient flow of functionalized energy

ut = −G δF
δu
,

u(x , 0) = u0(x).

Here G = −∆
1−∆ .

Gradient Flows for FCH

Consider the “simplest” mass preserving gradient flow

ut = −Π0

δFCH(u)

δu
= −Π0

F (u)� �� ��
�2∆ − W ��(u) + η

� �
�2∆u − W �(u)

�
,

8Figure: [N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, 2010]
Numerical Simulation for the evolution of the G FCH gradient flow
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Pearling interface for Amphiphilic Mixture
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Figure: [J. Jones, 2013]Numerical simulation for the evolution of the G
FCH gradient flow (Left)T = 1 (Right)T = 20
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Qualitative Comparison to Data
Qualitative Comparison to Data

32 

Numerical simulations vs data 

!! Random initial data 

!! !=0.001, "=2 

!! t=5000  

!! Good qualitative match with experimental data  

Keith – where did this  

come from? Bates 

network material spanning the vitrified film,
which screens individual features. Neverthe-
less, the edges of the object captured in Fig.
2B reveal the same general structural ele-
ments evident in the smaller fragment pre-
sented in Fig. 2C. Decreasing the size of the
PEO block (i.e., from wPEO ! 0.42 to 0.39 to
0.34) increases the population of Y-junctions
to the point of network formation and phase
separation. We emphasize that a systematic
search of NPB ! 46 diblock copolymer solu-
tions between the B and C states (Fig. 1)
failed to uncover such phase behavior (18).

Increasing diblock copolymer molecular
weight has another notable consequence. The
equilibrium solubility in water drops expo-
nentially with the degree of polymerization,
resulting in extremely slow exchange dynam-
ics between individual micelles (19). Hence,
fragmentation of the network phase by stir-
ring or sonication produces a nonergodic dis-
persion of particles. Until buoyancy forces
compact and fuse these particles (smaller par-

ticles should survive longer under the action
of thermal motion), each is subject to a lo-
calized free-energy optimization.

We have exploited this property to pro-
duce small, isolated micelles in the 1 wt%
wPEO ! 0.34 aqueous solution by agitation.
Representative cryo-TEM images taken
from numerous examples are illustrated in
Fig. 3. These images tell us much about
the self-assembly characteristics of this
PB-PEO diblock copolymer. All of these
complex micelles (along with the network
fragments shown in Fig. 2, B and C) are
constructed from only three elements: Y-
junctions, spherical end caps, and cylindri-
cal loops. (One of the most distinguishable
differences between the wPEO ! 0.34 and
0.39 dispersions is the nearly complete lack
of linear cylinders in the former.) Y-junc-
tions can be found with three spherical caps
(Fig. 3A), two caps (Fig. 3, D, E, and H),
one cap (Fig. 3, B to D, F to H, J to L, and
N), and no caps (Fig. 3, I and M). With just

three exceptions (Fig. 3, F, K, and L), the
objects appear to be planar. (To some ex-
tent the planar appearance may be driven
by confinement within a thin-film geome-
try.) Y-junctions exhibit a tendency to pair,
and to coalesce into periodic arrays. This
tendency is evident in micelles containing
as few as 2 (Fig. 3, C and D) and as many
as 23 (Fig. 3N) junctions.

A striking feature shared by all the mi-
celles presented in Fig. 3 is a high degree of
(mirror) symmetry, with the most compel-
ling examples found in panels (A) to (D),
(I), and (M). We believe that this symmetry
reflects a tendency to balance the internal
free-energy through the redistribution of
diblock copolymer molecules within the
particle after micelle formation by frag-
mentation (or fusion) (20). Because the
local movement of PB-PEO molecules is
unhindered (the glass transition for the un-
entangled PB blocks is about –12°C) (21),
certain rearrangements of the tubular struc-
ture are feasible subject to the well-estab-
lished rules governing microphase separa-
tion of monodisperse block copolymers
(22). Optimization of the particle free- energy
will pit the overall surface tension (propor-
tional to the micelle surface area) against
chain stretching inside (PB) and outside
(PEO) the tubular structure (23). The unifor-
mity in core diameters (34 nm on the basis of
the cryo-TEM images) found within each
micelle and across all micelles is evidence
that these rules are operative. Accounting for
the recorded shapes and topologies should
prove a challenge to self-consistent field the-
orists working with block copolymers. Even
if we ignore “isomerizations” involving topo-
logical transitions (i.e., breaking or collaps-
ing loops) (24 ), Y-junctions can be created
by sprouting a spherical cap on a cylindrical
section with the required polymer drawn
from loop sections. The prevalence of spher-
ically capped Y-junctions in Fig. 2, B and C,

Fig. 2. Cryo-TEM images obtained from 1 wt% aqueous solutions of (A) wPEO ! 0.39 and (B and
C) wPEO! 0.34 PB-PEO diblock copolymers. The single-phase solution denoted CY in Fig. 1 (wPEO!
0.39) contains a dispersion of micelles constructed from linear and looped cylindrical segments,
Y-junctions, and spherical caps. Macroscopic phase separation at wPEO ! 0.34 is manifested in
large, dense network particles (B) containing a preponderance of loops and Y-junctions. A smaller
network fragment (C) provides a more detailed glimpse of the morphology associated with the
network phase. Bars (A to C), 200 nm.

Fig. 3. (A to N) Representa-
tive cryo-TEM images of net-
work phase fragments ob-
tained after agitating the
wPEO ! 0.34 solution. These
micelles are constructed from
three structural units: Y-junc-
tions, spherical caps, and cy-
lindrical loops. The high de-
gree of mirror symmetry is
speculated to derive from a
tendency to balance the local
free-energy through transport
of diblock copolymer mole-
cules within the reticulated
tubular structures.
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(Left) A 2D simulation of the G1 FCH gradient flow with periodic
boundary conditions for an 80% Polymer (white) 20% solvent (dark)
mixture starting from “well-boiled” initial data. (Right) TEMs of PB-
PEO di-block co-polymers with PEO weight fraction wPEO = 0.39
with bar length 200 nm . “All of the complex networks are constructed
of Y-junctions, spherical end caps, and loops”.

9

Figure: (Left)[N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, 2010]
A 2D simulation of the FCH gradient flow with periodic boundary
conditions for an 80% polymer (white) 20% solvent (dark) mixture
starting from random initial data; (Right)[S. Jain, F. Bates, 2003]
Amphiphilic di-block co-polymer mixtures of Polyethylene oxide and
Polybutadiene.
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Assumption and Scaling for Functional Analytical Approach

(H1) The well potential W is a smooth double well W = P2 where
P is a convex function with transverse zeros at b± with
b− < b+, W (b±) = W ′(b±) = 0 and µ± := W ′′(b±) > 0.

(S) Fix η ∈ R and β < 0. Then our standard scaling is

η̃ = ηδ2, b = b− + δ2β, for 0 < δ � 1.

where b is the background state of the homoclinic pulse.

b
− b

+ b
−

b
+ b

η̃

b−
︸ ︷︷ ︸

δ2





δ2
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Functional Analytical Approach

The functional analytical approach is based upon the Newton type
contraction mapping argument.
Basic Idea: It constructs the homoclinic solution Φm of the full
system in the neighborhood of φm, which is the homoclinic
solution of a particular second-order differential equation,

φ′′m = G ′(φm),

where
G (u;α, b) = W (u)−W (b)−W ′(b)(u−b)−η̃/4(u−b)2−η̃αg(u; b),
a perturbation of the equal-depth double-well potential W .

 

 

W

G

b+
Shift

b b−

δ2β

Tilt
δα

 

 

φ
m

δ1/2 b+

b

12 / 38



Degeneracy of the problem

Difficulty: the linearization of the full system about φm is
degenerate.
Let φh the heteroclinic solution of

φ′′h = W ′(φh),

which connects the two minima b± of W . Linearizing the full
system around φh yields Lh := (Lh + η̃) Lh, where
Lh := ∂2

z −W ′′(φh).

 

φ
h

b
−

b
+

σ(Lh) σ(Lh)
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Degeneracy of the problem

Linearizing the full system around φm yields Lm := (Lm + η̃) Lm,
where Lm := ∂2

z −W ′′(φm).

φ
m

b b

σ(Lm)

O(δ)

σ(Lm)

The degeneracy is related to the small eigenvalue. Removing this
degeneracy is the main effort of the contraction mapping
construction.
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Functional Analytical Approach

After integration by parts, shifting the potential and adding the
tilt, we obtain the shifted energy,

H(u) =

∫

Ω

1

2

(
ε2∆u − G ′0(u)

)2
+ p(u) dx .

where G0(u) = W (u)−W (b)−W ′(b)(u − b)− η̃/4(u − b)2.
Relation: δH

δu = δF
δu − θ, where θ = W ′(b)(W ′′(b)− η̃).

We introduce a ”tilt” parameter (Modica-Mortola parameter) α
that tunes the shape of the potential,

G (u;α, b) = G0(u; b)− δαg(u; b),

where g(u; b) =
∫ u
b

√
W (t − b + b−)dt.Then H can be written,

H(u) =

∫

Ω

1

2

(
ε2∆u − G ′(u)− δαg ′(u)

)2
+ p(u) dx .

15 / 38



Reduced problem and Full problem

φm = φm(z ;α) is the homoclinic solution of the second-order
differential equation,

φ′′m = G ′(φm;α),

which is homoclinic to b and symmetric about z = 0.

 

 

W

G

b+
Shift

b b−

δ2β

Tilt
δα

 

 

φ
m

δ1/2 b+

b

Φm = Φm(z ; δ, η, β) is the homoclinic solution of the fourth-order
differential equation,

δH
δu

(Φm) = 0.

Relation: Φm = φm(z ;α∗(δ;β, η)) + O(δ2) in H4
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Main Theorem

Theorem 1
Let the potential W satisfying (H1) be given. Let η̃, β be given by
the scaling (S) and η, β satisfy

(H2)
∣∣Ah

1β + Ah
2η
∣∣ > ν δω,

for some ν > 0, ω > 0 independent of δ only depends on W . The
constants Ah

1 and Ah
2 depend only upon the heteroclinic orbit φh,

Ah
1 := −9

2
µ

5
2
+(b+ − b−) + 3

(
W ′′′(φh)(φh − b−), (φ′h)2

)
2
,

Ah
2 :=

(
W ′′′(φh)(φh − b−), (φ′h)2

)
2
.

Then there exists a solution Φm of full system admits the
following expansion

Φm = φm(z ;α∗(δ;β, η)) + O(δ2),

in H4 where φm is the corresponding solution of the second-order
differential equation with α∗ = α∗(δ;β, η).
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Main Theorem

b

η̃

b−
︸ ︷︷ ︸

δ2





δ2

‘bad’ ray

I Conjecture : High order Melnikov integral Ah
1, Ah

2 is related to
an orbit-flip condition in the fourth-order system.

I α∗ has the expression

α∗(δ;β, η) =

√√√√−µ
3
2
+(b+ − b−)β√

2 g(b+)
+ O(

√
δ).
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Outline of Proof of Main Theorem

We want to show that for δ small enough, we can generate a
solution of the Euler-Lagrange via a modified Newton’s method
initiated at φm, where φm is the homoclinic solution of the second
order problem. We define the Newton map,

N(u) = u − L−1
α (F (u)),

where

Lα =
δ2H
δu2

(φm(z ;α)), F (u) =
δH
δu
.
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Analysis of the operator Lα
Expand Lα,

Lα = L2
α + δ α

(
G ′′′(φm)g ′(φm)− g ′′(φm)Lα − Lαg ′′(φm)

)

+δ2
(
α2g ′′′(φm)g ′(φm) + α2g ′′(φm)2 + p′′2 (φm)

)
.

where

Lα = ∂zz − G ′′(φm).

In order to know spectrum of Lα, we need to know the spectrum
of Lα first.

σ(Lα)

λ1 = 0 λ0 = O(δ)
ψ1 = φ′m ψ0 =

√
W (φm) +O(δ)
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Analysis of the operator Lα
Lα is an O(δ), relatively compact perturbation of the operator L2

α,
it has two small eigenvalues, which we denote

Λ0 = λ2
0 + O(δ2)︸ ︷︷ ︸

O(δ2)

, Λ1 = O(δ),

with eigenfunctions

Ψ0 = ψ0 + O(δ), Ψ1 = ψ1 + O(δ).

Ψ0 is even about z = 0 and Ψ1 is odd about z = 0.
σ(Lα)

Λ0 = O(δ2)

Λ1 = O(δ)

Ψ0 = ψ0 + O(δ)

Ψ1 = ψ1 + O(δ)

Note: ε =
√
δ

21 / 38



Conditioning of the Newton map

Lα has two eigenvalues near zero. In order to invert Lα for Newton
map, we need a tuning parameter, α, Modica-Mortola parameter.

I For Λ1 = O(δ) with eigenfunction Ψ1

Since Ψ1 is odd function, then by even-odd symmetry,

(F (φm),Ψ1)2 = 0.

I For Λ2 = O(δ2) with eigenfunction Ψ0

Does there exist tilt α∗ = α∗(δ;β, η),

(F (φm(., α∗)),Ψ0(., α∗))2 = 0?

Answer: Yes.
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Sketch of Proof of Main Theorem

I There exists α∗ = α∗(δ;β, η) such that φ∗m := φ(·, α∗)
satisfies

(F (φ∗m),Ψ0(., α∗))2 = 0.

Introduce

B∗ρ =
{

u − b ∈ H4
e (R)

∣∣‖u − (φ∗m − ξ∗)‖H4 ≤ ρδ5/2
}
,

where

ξ∗ = L−1
α∗ F (φ∗m) = O(δ2).

I There exists ρ1, ρ2 > 0 such that for any u ∈ B∗ρ1
there exists

a unique α = α(u;β, η) satisfying |α− α∗| < ρ2δ
2 such that

(F (φm(., α)),Ψ0(., α))2 = 0.

I Newton map N(u) = u − Lα−1(F (u)) is a contraction
mapping on B∗ρ .
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Dynamical Systems Approach (Lin’s method)

In the view of dynamical system way, we rewrite our problem as a
one-parameter family of vector fields

ẋ = f (x , θ),

where x = (u, u′, u′′, u′′′)T and f : R4 × R→ R4 is smooth. For
θ = 0 we have the heteroclinic connections between two
equilibriums p1 = (b−, 0, 0, 0)T and p2 = (b+, 0, 0, 0)T .

lim
z→−∞

q1(z) = p1, lim
z→∞

q1(z) = p2,

lim
z→−∞

q2(z) = p1, lim
z→∞

q2(z) = p1.

The system is reversible, that is symmetric under the
transformation z 7→ −z .
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p1
p2

q2(z)

q1(z)

For θ = 0

q1(z) = (φh(z), φ′h(z), φ′′h(z), φ′′′h (z))T ,

where φh is the heteroclinic solution of the second order problem
φ′′ = W ′(φ). Symmetrically there is another heteroclinic
connection

q2(z) = (φh(−z),−φ′h(−z), φ′′h(−z),−φ′′′h (−z))T .

25 / 38



Spectrum of Dx f (pi , θ) under scaling (S)

(S) Fix η ∈ R and β < 0. η̃ = ηδ2, b = b− + βδ2, for 0 < δ � 1.

θ = (W ′′(b)− η̃)W ′(b),

= µ−(µ− − η̃)βδ2 + O(δ3).

σ(Dxf (x; δ)|(p1,0))

−√µ− √
µ−

σ(Dxf (x; δ)), 0 < δ � 1

−√µ− √
µ−−√µ− − η̃

√
µ− − η̃

O(δ2)
︷ ︸︸ ︷ O(δ2)

︷ ︸︸ ︷

Doubly Degenerate Conditions:
I Jordan Block Structure of the eigenvalue of Dx f (pi , θ) for
δ = 0;

I for δ 6= 0 Jordan Block unfolds smoothly in δ forming real
eigenvalues which perturb at O(δ2).
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Orbit Flip Condition

δ �= 0, η > 0

δ = 0

δ �= 0, η < 0

Figure: Depiction of the stable manifold of the equilibrium of a
homoclinic orbit under an orbit flip bifurcation.

Conjecture: condition (H2) is equivalent to the orbit-flip condition.
It is precisely when the second-order system is different to the
fourth-order system. We avoid this via Lin’s method by changing
the scaling.

27 / 38



Spectrum of Dx f (pi , θ) under scaling (S’)

(S’) Fix η̃, β such that −min {µ±} < η̃ < 0 and β < 0. b = b− + βδ2,
for 0 < δ � 1. η̃, β are independent of δ and η̃ is not small.

b

η̃

b−
︸ ︷︷ ︸

δ2 



O(1)

−min{µ±}

σ(Dxf (p1; δ))

−√µ− − η̃ √
µ− − η̃−√µ− √

µ−

O(1)
︷ ︸︸ ︷ O(1)

︷ ︸︸ ︷

σ(Dx f (p1, δ)) = {±√µ−,±
√
µ− − η̃},

σ(Dx f (p2, δ)) = {±√µ+,±
√
µ+ − η̃}.
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For θ = 0, the stable and unstable manifolds W s(pi ) and W u(pi ),
i = 1, 2 for our system are two-dimensional. Moreover

Tq1(0)W u(p1) ∩ Tq2(0)W s(p2) = span{q̇1(0)},
Tq2(0)W u(p2) ∩ Tq1(0)W s(p1) = span{q̇2(0)}.

Introduce the subspace Zi such that

R4 = Z1 ⊕
(
Tq1(0)W u(p1) + Tq1(0)W s(p2)

)
,

R4 = Z2 ⊕
(
Tq2(0)W u(p2) + Tq2(0)W s(p1)

)
.

Remark that dim(Zi ) = 1. We construct the section planes Σi

which are transverse to qi (z) at some point qi (0).
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Lin’s heteroclinic orbit construction

I (Step One) Construct the perturbed heteroclinic orbits q±i
near qi that solves the full system up to the jump in Σi along
Zi . Moreover, it satisfies

(Q1) q±i (z ; θ) are close to qi (z).

(Q2) limz→∞ q+
1 (z ; θ) = p2, limz→−∞ q−1 (z ; θ) = p1.

(Q3) limz→∞ q+
2 (z ; θ) = p1, limz→−∞ q−2 (z ; θ) = p2.

(Q4) q±i (0; θ) ∈ Σi .

(Q5) ξ∞i (θ)ψi := q+
i (0; θ)− q−i (0; θ) ∈ Zi .

30 / 38



Σ1

p1 p2

q−
1 (z) q+

1 (z)

q1(z)

Z1

the jump estimate ξ∞i (θ) have the expression

ξ∞i (θ) = Miθ + O(θ2),

where the Melnikov integral Mi is defined

Mi :=

∫

R
ψi (s) Dθf (qi (s), 0) ds 6= 0.

where ψi (z) = T ∗i (z , 0)ψi . Here Ti (z , s) denotes the transition
matrix of v̇ = Dx f (qi (z), 0)v and ψi spans Zi .
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Lin’s homoclinic orbit construction

I (Step Two) Construct the Lin’s orbits x±i near q±i and it
solves the full system up to the jump. These orbits have the
prescribed flying time 2ω from Σ1 to Σ2. Moreover, it
satisfies
(L1) x±i (z ; θ) are close to q±i .
(L2) x+

i (0; θ)− x−i (0; θ) ∈ Zi .
(L3) x−1 (−∞) = x+

2 (∞) and x+
1 (ω) = x−2 (−ω).

p1 p2

Σ1

Σ2

q1

q2

x−1

x+2

x+1

x−2

ω

ω
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Estimates for the Jump

We derive an expression for the jump

ξi (θ, ω) := < ψi , x
+
i (θ, ω)(0)− x−i (θ, ω)(0) >,

= ξ∞i (θ) + ξωi (θ), i = 1, 2.

I heteroclinic jump has the expansion

ξ∞i (θ) = Miθ + O(θ2).

I difference between the heteroclinic jump and homoclinic jump

ξωi (θ) = ξi (θ, ω)− ξωi (θ).
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Solving the Bifurcation Equation

To obtain the homoclinic orbit, we require the jumps to be zero,
i.e., ξ1(θ, ω) = 0 which by the symmetry property of the system
also implies ξ2 = 0.
We also derive the leading order term of ξ1(ω, θ)

ξ1(ω, θ) = M1θ + cu(θ)e−2ωλu2(θ) + o(e−2ωλu2(θ)),

where λu2(θ) =
√
µ+ and the function cu(·) is smooth and

cu(0) 6= 0. Solving the bifurcation equation ξ1 = 0 we have at the
leading order

ω = −
ln
(
−M1θ
cu(0)

)

2λu2(0)
+ o(ω).

In order to make −M1θ/cu(0) > 0 we have to choose β < 0.
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Main Theorem

b

η̃

b−
︸ ︷︷ ︸

δ2 



O(1)

−min{µ±}

Theorem 2
Let η, b and double well W be given and satisfy (H1) and (S’).
Then there exists δ0 > 0 such that for all 0 < δ < δ0, there exists a
homoclinic solution Φm which is homoclinic to b.
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Connection between these two methods

Functional Analysis Method

I sharp characterization of the homoclinic solution of full system
in terms of the homoclinic solution of second order problem

I indentifies a nondegeneracy condition (H2) – (Orbit Flip?)

I Contraction Mapping argument

Dynamical System Method

I existence of homoclinic solution in the neighborhood of the
heteroclinic chain of full problem

I we didn’t permit η̃ to scale with δ.

I Lin’s method based upon Lyapunov-Schmidt method
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Conclusion and Thanks

I Introduction to the Functionalized Cahn-Hilliard Energy

I Existence of the homoclinic solution proved by two approaches

I Acknowledgement: thanks a lot to my supervisor, Keith
Promislow, our group members, Greg Hayrapetyan, and
NSF-DMS 0707792.
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