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Introduction to the Functionalized Cahn-Hilliard Energy

Existence of Bilayer (Homoclinic solution) of the Functionalized
Cahn-Hilliard Energy by Functional Analytical Approach

Existence of Bilayer by Lin's method for less degenerate class of
perturbations
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Single Layer versus Bilayer

Single-layer can not:
> open up a pore;

» pearl the interface;
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Amphiphilic Mixture

~— Phospholipid Bilayer ——
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Figure: [K. Promislow, 2013](Left) A typical lipid bilayer with polar head
groups exposed and hydrophobic tails point inward toward the center
line. (Right) A spherical liposome.
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Functionalized Cahn-Hilliard Energy

We define the quadratic functionalization of F related to the local
balance |7j| <1 to be

Flu) = /Q . (‘;i)z dx — i £(u)
_ /Q% (~e2nu+ W’(u))2 i <522|VU2 + W(u)) dx

over some appropriate subspace of H2(Q). Here &£ is the Cahn-Hilliard
Energy and W is a double well potential with wells at b..

No Tilt
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The long-time evolution of a mass-preserving projection gradient
flow of the Functionalized Energy on a periodic domain Q € R for
d>2,

OF
ug = _gﬁj
u(x,0) = up(x).

where G is positive, self-adjoint operator whose only kernel is the
constant factor 1. Examples include the zero-mass projection g,

1
Flf::f—/fxdx,
’ l Jo

as well as the negative Laplacian —A subject to some
mass-preserving boundary condition.
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We are interested in the critical points of above equation,
0F
0
g ou
G ((£°A — W'(u) + 7i)(?Au — W'(u))) = 0.
We look for flat interface co-dimension one bi-layer solutions ®,;,,

(02 — W' (D) + ) (02, — W (D)) = 6.

> For 8 = 0, there are single-layer heteroclinic solutions seen in
the gradient flow of Cahn-Hilliard equation

¢~ W(6) =0

» But for 0 < |f| < 1, the fourth order equation possesses a
rich family of homoclinic solutions (bilayer solutions).
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Gradient flow of functionalized energy

OF
uy = _g577
u(x,0) = up(x).

Figure: [N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, 2010]
Numerical Simulation for the evolution of the G FCH gradient flow
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Pearling interface for Amphiphilic Mixture

Figure: [J. Jones, 2013]Numerical simulation for the evolution of the G
FCH gradient flow (Left)T =1 (Right) T =20
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Qualitative Comparison to Data

Figure: (Left)[N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, 2010]
A 2D simulation of the FCH gradient flow with periodic boundary
conditions for an 80% polymer (white) 20% solvent (dark) mixture
starting from random initial data; (Right)[S. Jain, F. Bates, 2003]
Ampbhiphilic di-block co-polymer mixtures of Polyethylene oxide and
Polybutadiene.
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Assumption and Scaling for Functional Analytical Approach

(H1) The well potential W is a smooth double well W = P2 where
P is a convex function with transverse zeros at b+ with
b_ < by, W(by) = W'(bst)=0and pus = W"(by) > 0.
(S) Fixn € R and 8 < 0. Then our standard scaling is

fi=mnd% b=b_+0%3, for 0<d5<1.
where b is the background state of the homoclinic pulse.
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Functional Analytical Approach

The functional analytical approach is based upon the Newton type
contraction mapping argument.

Basic ldea: It constructs the homoclinic solution ®,, of the full
system in the neighborhood of ¢.,, which is the homoclinic
solution of a particular second-order differential equation,

,r/n = Gl(¢m)y

where

G(u; @, b) = W(u)—W(b)— W'(b)(u—b)~ij/4(u—b)? —iiag(u; b)

a perturbation of the equal-depth double-well potential W.
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Degeneracy of the problem

Difficulty: the linearization of the full system about ¢, is
degenerate.
Let ¢ the heteroclinic solution of

= W'(¢n),

which connects the two minima b of W. Linearizing the full
system around ¢y, yields Ly, := (Lj, + 7}) Lh Where
Ly := 82 = W (¢p).

o(Ln)

(q,‘ +

—
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Degeneracy of the problem

Linearizing the full system around ¢, yields L, := (L + 1) L,

where L, := 02 — W' (¢pm). -

(L)

The degeneracy is related to the small eigenvalue. Removing this

degeneracy is the main effort of the contraction mapping

construction.
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Functional Analytical Approach

After integration by parts, shifting the potential and adding the
tilt, we obtain the shifted energy,

H(u) = /Q % (?Au— Gé(u))2 + p(u) dx.

where Go(u) = (u) W(b) — W!(b)(u — b) — 7j/4(u — b)>.

Relation: ‘?j = 5u — 6, where 6§ = W/(b)(W"(b) — 7).

We introduce a "tilt” parameter (Modica-Mortola parameter) «
that tunes the shape of the potential,
G(u; a, b) = Go(u; b) — dag(u; b),

where g(u; b) = [,/ \/W(t — b+ b_)dt. Then H can be written,
1
H(u) = / 5 (280~ G'(u) ~ dag/(u)* + p(u) d.
Q
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Reduced problem and Full problem

dm = ®m(z; ) is the homoclinic solution of the second-order
differential equation,

/r/n = G/(¢m; Oé),

which is homoclinic to b and symmetric about z = 0.

.;

Til
Sax

T b
< Shift
525

&, = ®py(2;0,m, ) is the homoclinic solution of the fourth-order
differential equation,

oH
ou
Relation: ®p, = ¢m(z; as(5; B,1)) + O(62) in H*

((Dm) =0.
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Main Theorem

Theorem 1
Let the potential W satisfying (H1) be given. Let 7j, B be given by
the scaling (S) and n, 8 satisfy

(H2) |AIB + Aln| > v®,

for some v > 0, w > 0 independent of § only depends on W. The
constants A’f and Ag depend only upon the heteroclinic orbit ¢y,

9 s
Al = —opi(by = bo) +3 (W (6n)(én — bo), (4)%),

AS = (W () (6 — b-), (64)%), -

Then there exists a solution ®,, of full system admits the
following expansion

O = Om(z; u(5; B,m)) + O(6?),

in H* where ¢, is the corresponding solution of the second-order
differential equation with a, = a.(5; 8, 1).
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Main Theorem

‘bad’ ray

» Conjecture : High order Melnikov integral A”, Ag is related to
an orbit-flip condition in the fourth-order system.
> «, has the expression

| k(b —b)B

ax(6; B,n) = V2g(by) + O(VY9).
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Outline of Proof of Main Theorem

We want to show that for § small enough, we can generate a
solution of the Euler-Lagrange via a modified Newton's method
initiated at ¢, where ¢,, is the homoclinic solution of the second
order problem. We define the Newton map,

N(u) = u— LI (F(u)),

where

5°H oH
Lo = W((Zsm(za))? F(u) = 30
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Analysis of the operator L,
Expand L,
Lo = L3+60a(C"(¢m)g (ém) — &"(¢m)La — Lag"(ém))
+02 (0?8 (¢m)g'(0m) + 28" (6m)? + p3(ém)) -

where

Lo =0 — G//(¢m)-
In order to know spectrum of L,, we need to know the spectrum
of L, first.

a(Ly)

M =0 \ A =0(0)
/ |
V=0 =\ Wign) +0()
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Analysis of the operator L,
L, is an O(6), relatively compact perturbation of the operator L2,
it has two small eigenvalues, which we denote
Ao = N3 + O(82), A1 = O(9),
——
0(82)
with eigenfunctions
Vo = tho + O(5), V1 =11 + O(9).

Yy is even about z =0 and W is odd about z = 0.
“U(EQ)

Ay = 0(9)
Uy = + O(9)

/4
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Conditioning of the Newton map

L., has two eigenvalues near zero. In order to invert L, for Newton
map, we need a tuning parameter, o, Modica-Mortola parameter.

» For A1 = O(9) with eigenfunction W
Since Wy is odd function, then by even-odd symmetry,

(F(¢ém),V1)2 =0.

» For Ay = O(42) with eigenfunction W,
Does there exist tilt a,. = a.(9; 5, 7),

(F(¢m(., o)), Wol., a))2 = 0?

Answer: Yes.



Sketch of Proof of Main Theorem
» There exists o, = aw(9; 5,7) such that ¢F, = &(-, o)

satisfies
(F(65,). Vol a.))2 = 0.
Introduce
B, = {u — b e HIR)|lu — (¢}, — &)l e < p55/2} ,
where

& = L F(9),) = O(8%).

> There exists p1, p2 > 0 such that for any u € B;l there exists
a unique a = a(u; B, 7) satisfying |a — ax| < p26? such that

(F(ém(-, ), Wo(.,a))2 = 0.

» Newton map N(u) = u— L, 1(F(u)) is a contraction
mapping on B;.
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Dynamical Systems Approach (Lin’s method)

In the view of dynamical system way, we rewrite our problem as a
one-parameter family of vector fields

x = f(x,6),

where x = (u, v/, u”,u"™)7 and f : R* x R — R* is smooth. For
# = 0 we have the heteroclinic connections between two
equilibriums p; = (b_,0,0,0)" and p» = (b4,0,0,0)7.

lim _qu(2) = p1, lim qi(2) = p2,

z

lim g2(2) = pu, lim q2(z) = pr-

The system is reversible, that is symmetric under the
transformation z — —z.
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For =0

q1(2) = (¢n(2), h(2), Dh(2), o' (2)) ",

where ¢, is the heteroclinic solution of the second order problem
¢" = W'(¢). Symmetrically there is another heteroclinic
connection

62(2) = (¢h(~2), = Ph(~2), $h(~2), o} (=2)) .
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Spectrum of D,f(p;,#) under scaling (S)

(S) Fixn€Rand B<0. 1 =162 b=b_+ 362 for0 << 1.

0 = (W'(b)—i)W'(b),
= p(p- — 7B + 0(5%).

O(Dﬁlvf[;r:é)\[m 0)) a(Dof(z;0),0<d < 1
0 01
/\ /\
4 N PR R
- e R R

Doubly Degenerate Conditions:
» Jordan Block Structure of the eigenvalue of D, f(p;,0) for
6 =0;:
» for § # 0 Jordan Block unfolds smoothly in § forming real
eigenvalues which perturb at O(62).

26
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Orbit Flip Condition

5#0,m>0

§#0,m<0

Figure: Depiction of the stable manifold of the equilibrium of a
homoclinic orbit under an orbit flip bifurcation.

Conjecture: condition (H2) is equivalent to the orbit-flip condition.
It is precisely when the second-order system is different to the
fourth-order system. We avoid this via Lin's method by changing
the scaling.

27 /38



Spectrum of D,f(p;, ) under scaling (S')

(S") Fix 7}, B such that —min{us+} <fi<0and 3<0. b= b_ + (35°
for 0 < 0 < 1. 7}, B are independent of § and 7 is not small.
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o(DeF(pr8) = (i i ik
J(DX f(p2a 5)) = {i\/ﬂv + V H+ — ﬁ}
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For 6 = 0, the stable and unstable manifolds W*(p;) and W"(p;),
i = 1,2 for our system are two-dimensional. Moreover

T oW (p1) N To)W*(p2) = span{Gi(0)},
qu(O) Wu(pz) N qu(O) Ws(pl) = Span{('D(O)}.

Introduce the subspace Z; such that

R* = Z1® (Tgo)W!(p1) + Too) W (p2)) .
R* = Za (T@W"(P2) + To,0) W3(p1)) -

Remark that dim(Z;) = 1. We construct the section planes ¥;
which are transverse to g;(z) at some point g;(0).
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Lin's heteroclinic orbit construction

» (Step One) Construct the perturbed heteroclinic orbits q,-i
near g; that solves the full system up to the jump in X; along
Z; . Moreover, it satisfies

(Q1) g (z;0) are close to gi(z).

(Q2) lim;—e0 g1 (2;0) = p2, lim,—s_ oo q; (2;0) = p1.
(Q3) lim; o0 g3 (2:0) = p1, lims o a3 (2:6) = p2.
(Q4) q;(0;0) € ¥;.

(Q5) &*(0)yi == q;7(0;0) — q; (0;0) € Z;.
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3

ar (2) - qi (=)

N

P1 D2

the jump estimate £7°(6) have the expression
£°(0) = Mif + O(6),
where the Melnikov integral M; is defined
M; = / ¥i(s) Dof(qi(s),0) ds # 0.
R

where v;(z) = T7(z,0)v;. Here Ti(z,s) denotes the transition
matrix of v = Dyf(qi(z),0)v and v; spans Z;.
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Lin's homoclinic orbit construction

> (Step Two) Construct the Lin's orbits x* near g and it
solves the full system up to the jump. These orbits have the
prescribed flying time 2w from X; to X». Moreover, it

satisfies
(L1) xE(z;0) are close to g
(L2) xF(0;0) — x(0;0) € Z.

(L3) sy (—00) = % (00) and x5 () = x5 ().

@
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Estimates for the Jump

We derive an expression for the jump
&i(0,w) = <, x"(0,w)(0) — x (0,w)(0) >,
= &T0)+¢7(0), =12
» heteroclinic jump has the expansion
£2°(0) = M0 + 0(6?).
» difference between the heteroclinic jump and homoclinic jump

£(0) = &i(0,w) — £7(0).
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Solving the Bifurcation Equation

To obtain the homoclinic orbit, we require the jumps to be zero,
i.e., £&1(0,w) = 0 which by the symmetry property of the system
also implies & = 0.

We also derive the leading order term of &1(w, 6)

E1(w, 0) = M10 + c“(0)e 2 (0) 4 o(e72X5(0))

where \J(6) = \/u+ and the function c¢“(-) is smooth and
c!(0) # 0. Solving the bifurcation equation £ = 0 we have at the
leading order

— M6
o () +o(w)
225(0) '

In order to make —M;6/c“(0) > 0 we have to choose 3 < 0.
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Main Theorem

—min{ps }

Theorem 2

Let n, b and double well W be given and satisfy (H1) and (S’).
Then there exists g > 0 such that for all 0 < § < g, there exists a
homoclinic solution ®,, which is homoclinic to b.
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Connection between these two methods

Functional Analysis Method

» sharp characterization of the homoclinic solution of full system
in terms of the homoclinic solution of second order problem

» indentifies a nondegeneracy condition (H2) — (Orbit Flip?)
» Contraction Mapping argument
Dynamical System Method

» existence of homoclinic solution in the neighborhood of the
heteroclinic chain of full problem

» we didn't permit 7} to scale with J.

» Lin's method based upon Lyapunov-Schmidt method

36
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Conclusion and Thanks

» Introduction to the Functionalized Cahn-Hilliard Energy
» Existence of the homoclinic solution proved by two approaches

» Acknowledgement: thanks a lot to my supervisor, Keith
Promislow, our group members, Greg Hayrapetyan, and
NSF-DMS 0707792.
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