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Review of Notation
• Forecast model: a known function M on a

vector space of model states.
• Truth: an unknown sequence {xn} of model

states to be estimated.
• Observations: a sequence {yo

n } of vectors
in observation space.

• Forward operator: a known function Hn
from model space to observation space.

• Observation error: εn = yo
n − Hn(xn).

• Background (before data): superscript b.
• Analysis (after data): superscript a.



Kalman Filter Review

• The Kalman Filter tracks a mean xb,a
n and

covariance Pb,a
n representing a Gaussian

distribution of model states.
• The analysis step assumes Gaussian

observation errors and computes (exactly if
Hn is linear) xa

n and Pa
n from xb

n , Pb
n , and the

observation error covariance Rn.
• The forecast step sets xb

n+1 = M(xa
n ).

• If M is nonlinear, there is no “right” way to
propagate the covariance from Pa

n to Pb
n+1.



Practical Difficulties
• If x is m-dimensional, then P is an m-by-m

matrix
• If m is large, the computational cost of

storing and manipulating P may be
prohibitive.

• Linearizing the model around the forecast
trajectory (as required by the Extended
Kalman Filter) can be expensive.

• Ensemble Kalman Filters make a low-rank
approximation to P and avoid explicit
linearization of the forecast model.



Ensemble Kalman Filters

• Introduced by Geir Evensen [1994].
• Use the sample mean and covariance of an

ensemble of forecasts as the Kalman filter
background.

• Form an ensemble of states that matches
the Kalman Filter analysis mean and
covariance and use it to initialize the next
ensemble forecast.

• Assumption: the model is approximately
linear within the range of the ensemble.



Ensemble Analysis

• Subscripts now index ensemble members
and not time.

• Input: background ensemble xb
1 , . . . , x

b
k with

sample mean x̄b and covariance Pb;
observation information yo, H, R.

• Output: analysis ensemble xa
1 , . . . , x

a
k with

sample mean x̄a and covariance Pa

determined as in the Kalman Filter.



Kalman Filter Equations

• Recall the Kalman filter analysis equations:

K =PbHT [HPbHT + R]−1

x̄a =x̄b + K (yo − Hx̄b)

Pa =(I − KH)Pb

• Note: x̄a − x̄b is called the analysis
increment.

• What should we do if H is nonlinear?
• How do we determine the analysis

ensemble?



Nonlinear Forward Operator H

• Write Pb = X b(X b)T whereX b is the matrix
whose i th column is (xb

i − x̄b)/
√

k − 1.
• Let Y b = HX b if H is linear.; then:

K =X b(Y b)T [Y b(Y b)T + R]−1

x̄a =x̄b + K (yo − Hx̄b)

Pa =(X b − KY b)(X b)T

• For nonlinear H, let yb
i = H(xb

i ), let ȳb be
the mean of the yb

i , and let Y b be a matrix
whose i th column is (yb

i − ȳb)/
√

k − 1.



Perturbed Observations
• There are many possible analysis

ensembles whose mean and covariance
are x̄a and Pa.

• One can apply the Kalman Filter update to
each ensemble member, perturbing the
observed values differently for each:

xa
i = xb

i + K (yo + εi − yb
i )

where εi ∼ N(0,R) [Burgers et al. 1998,
Houtekamer & Mitchell 1998].

• Then if H is linear, one can show that the
expected mean and covariance of the
analysis ensemble are x̄a and Pa.



Deterministic Approaches
• Square root filters track a matrix “square

root” of the model state covariance matrix;
in our case X b for which Pb = X b(X b)T .

• We seek a matrix X a of (scaled) analysis
ensemble perturbations such that
Pa = X a(X a)T .

• Add x̄a to the (scaled) columns of X a to get
the analysis ensemble.

• Various approaches to determining X a from
X b: EAKF [Anderson 2001], ETKF [Bishop
et al. 2001, Wang et al. 2004], EnSRF
[Whitaker & Hamill 2002]; see also [Tippett
et al. 2003].



Reduced Rank: Pros and Cons
• The background covariance allows analysis

increments only in the space spanned by
the ensemble perturbations.

• Indeed, in all the approaches on the last
two slides, each analysis ensemble
member can be written xa

i = x̄b + X bwi .
• If the ensemble is too small, the filter may

fail.
• If an ensemble of reasonable size is

successful, analysis computations can be
done in the ensemble space spanned by
the background ensemble perturbations.



Underlying Assumptions

• A linear combination of background
ensemble states is a plausible state.

• The truth lies reasonably close to the
ensemble space.

• More precisely, most of the uncertainty in
the background state lies in the ensemble
space.

• In particular, forecast uncertainty lies in a
relatively low-dimensional space.



A 2.5 Day Ensemble Forecast



A 4.5 Day Ensemble Forecast



Spatial Localization

• For a spatially extended system, it may not
be feasible to forecast an ensemble large
enough to span the possible global states.

• If long-distance correlations are weak, the
ensemble covariance will represent
spurious long-distance correlations.

• Localization reduces the effect of spurious
correlations and allows analysis increments
from a higher dimensional space.



Localization Approaches
• A standard approach is to localize the

background covariance Pb by multiplying
each element by a factor between 1 (for
variables at the same grid point) and 0 (for
variables farther apart than a chosen
localization distance.

• Our approach [LEKF, Ott et al. 2004;
LETKF, Hunt et al. 2007] is do a separate
analysis for each grid point using only
observations from within a local region that
we choose.

• These analyses can be done in parallel.



Inflation does “Time Localization”

• Many filters use multiplicative covariance
inflation, which at each step multiplies the
forecast (background) covariance by ρ for
an ad hoc parameter ρ > 1.

• This is equivalent to multiplying the term
corresponding to observations from t
analysis cycles ago in the least squares
cost function by a weight ρ−t .

• Covariance inflation compensates for
effects of model error, model nonlinearity,
etc.



LETKF Formalism

• LETKF stands for Local Ensemble
Transform Kalman Filter; equivalent to
LEKF but formulated more like ETKF.

• Recall Pb = X b(X b)T whereX b is a matrix
whose i th column is (xb

i − x̄b)/
√

k − 1.
• Consider model states x = x̄b + X bw where

w is a k -dimensional vector.
• If w has mean 0 and covariance I, then x

has mean x̄b and covariance Pb.



Analysis in Ensemble Space
• Let yb

i = H(xb
i ), let ȳb be their mean, and

form the matrix Y b of perturbations like X b.
• Make the linear approximation:

H(x̄b + X bw) ≈ ȳb + Y bw
• Minimize the cost function:

J(w) =ρ−1wT w

+ (ȳb + Y bw − yo)T R−1(ȳb + Y bw − yo)

• Compare to:

J(x) =(x − x̄b)T (ρPb)−1(x − x̄b)

+ (H(x)− yo)T R−1(H(x)− yo)



Analysis in Ensemble Space
• The analysis mean w̄a and covariance A

are:

A =[I + (Y b)T R−1Y b]−1

w̄a =A(Y b)R−1(yo − ȳb)

• Then x̄a = x̄b + X bw̄a and Pa = X bA(X b)T .
• Notice that the analysis equations in w

coordinates depend only on the background
ensemble {yb

i } in observation space and
the observation data yo and R.

• The matrix that is inverted to find A is
k -by-k and has no small eigenvalues.



Asynchronous Observations
• With this formulation, the filter easily

becomes “4D” (properly takes into account
temporal information) when observations
are asynchronous.

• When mapping the background ensemble
members xb

i into observation space, use
the background state at the appropriate
time for each observation.

• Assumption: a linear combination of
ensemble trajectories is an approximate
model trajectory.



Choice of Analysis Ensemble
• To form the analysis ensemble vectors wa

i ,
add to w̄a the columns of the symmetric
square root W a = [(k − 1)A]1/2.

• The analysis ensemble xa
i = x̄b + X bwa

i
then has the correct mean and covariance.

• Other choices are possible, but this choice
minimizes the change (in w , or in x with
Pb-norm) between the background and
analysis ensembles.

• Recall that we determine a different wa
i for

each grid point, using only observations
from a local region near that grid point.



Weight Interpolation

• If the localization distance is large relative
to the grid spacing, overlapping local
regions make nearby analyses consistent.

• For a high-resolution model, the overlap
causes a lot of computational redundancy.

• Solution: Compute the weights wa
i on a

coarse grid of analysis points and
interpolate them to the other grid points.

• Can improve balance [Yang et al. 2009].



Tapering Observation Influence
• At a given grid point, our local analysis (as

described so far) uses nearby observations
at “full” influence, while distant observations
have zero influence.

• The influence can be tapered more
smoothly from “1” to 0 by multiplying each
diagonal entry σ−2

j in R−1 by a factor
0 ≤ αj ≤ 1 that depends on the distance
from the corresponding observation
location to the analysis grid point.

• If R is not diagonal, replace R−1 by DR−1D,
where D is diagonal with entries √αj .



Toy Model Results

• Perfect model test with Lorenz-96 system of
coupled ODEs on a circular lattice:

dxm/dt = (xm+1 − xm−2)xm−1xm + 8.

• We used a model trajectory as the truth and
add noise to simulate observations.

• We compared our LEKF, using only
observations from within 6 grid points, with
a global ensemble Kalman filter (FEKF) [Ott
et al. 2004].



Global vs. Local Filter

M = model size, k+1 = ensemble size, E = error



Comparison to NCEP (2004) 3D-Var
• We ran the U.S. National Centers for

Environmental Prediction global forecast
model (GSM) at reduced T62 resolution
(about 500,000 grid points).

• We compared our LETKF analyses with
analyses from NCEP’s 3D-Var system (SSI)
using actual Winter 2004 non-satellite
observations (about 300,000 per 6 hours).

• We used a 60-member ensemble, 800 km
radius local region, spatially varying
inflation ρ ∼ 1.25 [Szunyogh et al. 2008].



48-hour Forecast Error
(compared to radiosonde observations)

+ = our LETKF o = NWS 3D-Var



Computational Speed

• At NCEP, less than 10 minutes of every 6
hour cycle is used for data assimilation.

• Our implementation took about 15 minutes
on a 40-processor Linux cluster.

• The computation time is approximately:
• linear in the number of observations;
• linear in the number of model grid

points;
• quadratic in the number of ensemble

members.



Extensions

• Parameter/Bias Estimation: treat
parameters of M or H as state variables
with time derivative zero (Baek et al. 2006,
2009; Cornick et al. 2009; Fertig et al.
2009).

• Nongaussian Filter: minimize nonquadratic
cost function numerically in ensemble
space (Harlim & Hunt 2007), as in MLEF
(Zupanski 2006).



Conclusions

• LETKF is a relatively simple, efficient, and
flexible framework for reduced-rank data
assimilation that works in practice.

• The method is largely model-independent.
• It scales well to large systems.
• Full citations for references to our group’s

work are on the publications page at:
http://www.weatherchaos.umd.edu

• Motto: Forecast globally, assimilate locally.


