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Review of Notation

Forecast model: a known function M on a
vector space of model states.

Truth: an unknown sequence {x,} of model
states to be estimated.

Observations: a sequence {y?} of vectors
in observation space.

Forward operator: a known function H,
from model space to observation space.

Observation error: =, = y2 — Hy(xp).
Background (before data): superscript b.
Analysis (after data): superscript a.



Kalman Filter Review

The Kalman Filter tracks a mean x> and
covariance P24 representing a Gaussian
distribution of model states.

The analysis step assumes Gaussian
observation errors and computes (exactly if
H, is linear) xZ and P2 from x?, P, and the
observation error covariance R,.

b _
The forecast step sets x;.; = M(x7).

If M is nonlinear, there is no “right” way to

propagate the covariance from P2 to PZ ..



Practical Difficulties

If x is m-dimensional, then P is an m-by-m
matrix

If mis large, the computational cost of
storing and manipulating P may be
prohibitive.

Linearizing the model around the forecast
trajectory (as required by the Extended
Kalman Filter) can be expensive.

Ensemble Kalman Filters make a low-rank
approximation to P and avoid explicit
linearization of the forecast model.



Ensemble Kalman Filters

Introduced by Geir Evensen [1994].

Use the sample mean and covariance of an
ensemble of forecasts as the Kalman filter
background.

Form an ensemble of states that matches
the Kalman Filter analysis mean and
covariance and use it to initialize the next
ensemble forecast.

Assumption: the model is approximately
linear within the range of the ensemble.



Ensemble Analysis

o Subscripts now index ensemble members
and not time.

o Input: background ensemble x?, ... x? with
sample mean x° and covariance P’;
observation information y°, H, R.

 Output: analysis ensemble x{. ..., x7 with
sample mean X2 and covariance P?
determined as in the Kalman Filter.



Kalman Filter Equations

Recall the Kalman filter analysis equations:
K =P°HT[HP"HT + R]™"
x? =xP + K(y° — HX®)
P2 =(I — KH)P"
Note: X2 — x? is called the analysis
increment.
What should we do if H is nonlinear?

How do we determine the analysis
ensemble?



Nonlinear Forward Operator H

o Write P? = X?(X?)T where X" is the matrix
whose ith column is (x? — x?)/v/k — 1.

o Let Y = HX"if His linear.; then:
K =X2(Y?)T[Ye(Y?)T 4 ]
X3 =xP + K(y° — HX®)
Pa —(Xb — Ky?)(X®)T
o For nonlinear H, let y? = H(x"), let y* be

the mean of the y”, and let Y* be a matrix
whose ith column is (y? — y°)/vk — 1.



Perturbed Observations

o There are many possible analysis
ensembles whose mean and covariance
are x? and P2

e One can apply the Kalman Filter update to
each ensemble member, perturbing the
observed values differently for each:

X/fay - Xib + K(yo +ei— ylb)
where ¢; ~ N(0, R) [Burgers et al. 1998,
Houtekamer & Mitchell 1998].
e Then if H is linear, one can show that the

expected mean and covariance of the
analysis ensemble are x? and P?.



Deterministic Approaches

Square root filters track a matrix “square
root” of the model state covariance matrix;
in our case X for which P> = XP(X®)T,

We seek a matrix X2 of (scaled) analysis
ensemble perturbations such that

P2 = Xa(Xx3)T.

Add x? to the (scaled) columns of X? to get
the analysis ensemble.

Various approaches to determining X2 from
XP: EAKF [Anderson 2001], ETKF [Bishop
et al. 2001, Wang et al. 2004], EnSRF
[Whitaker & Hamill 2002]; see also [Tippett
et al. 2003].



Reduced Rank: Pros and Cons

o The background covariance allows analysis
increments only in the space spanned by
the ensemble perturbations.

 Indeed, in all the approaches on the last
two slides, each analysis ensemble
member can be written x? = X° + XP°w;.

o If the ensemble is too small, the filter may
fail.

« If an ensemble of reasonable size is
successful, analysis computations can be
done in the ensemble space spanned by
the background ensemble perturbations.



Underlying Assumptions

A linear combination of background
ensemble states is a plausible state.

The truth lies reasonably close to the
ensemble space.

More precisely, most of the uncertainty in
the background state lies in the ensemble
space.

In particular, forecast uncertainty lies in a
relatively low-dimensional space.



A 2.5 Day Ensemble Forecast




A 4.5 Day Ensemble Forecast
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Spatial Localization

o For a spatially extended system, it may not
be feasible to forecast an ensemble large
enough to span the possible global states.

o If long-distance correlations are weak, the

ensemble covariance will represent
spurious long-distance correlations.

o Localization reduces the effect of spurious
correlations and allows analysis increments
from a higher dimensional space.



Localization Approaches

o A standard approach is to localize the
background covariance P° by multiplying
each element by a factor between 1 (for
variables at the same grid point) and 0 (for
variables farther apart than a chosen
localization distance.

o Our approach [LEKF, Ott et al. 2004;
LETKF, Hunt et al. 2007] is do a separate
analysis for each grid point using only
observations from within a local region that
we choose.

o These analyses can be done in parallel.



Inflation does “Time Localization’

o Many filters use multiplicative covariance
inflation, which at each step multiplies the
forecast (background) covariance by p for
an ad hoc parameter p > 1.

o This is equivalent to multiplying the term
corresponding to observations from ¢
analysis cycles ago in the least squares
cost function by a weight p .

o Covariance inflation compensates for
effects of model error, model nonlinearity,
etc.



LETKF Formalism

LETKF stands for Local Ensemble
Transform Kalman Filter; equivalent to
LEKF but formulated more like ETKF.
Recall P> = X?(X?)T where X" is a matrix
whose ith column is (x? — x?)/v/k — 1.
Consider model states x = x? + X°w where
w is a k-dimensional vector.

If w has mean 0 and covariance /, then x
has mean x? and covariance P”.



Analysis in Ensemble Space
o Let y? = H(xP), let ¥* be their mean, and
form the matrix Y? of perturbations like X?.
o Make the linear approximation:

H(x? + X°w) ~ y° + YPw
e Minimize the cost function:
J(w) =p 'wlw
+ (}_/b—i— YbW—yO)TF}’q(}_/b—f— YbW—yO)
o Compare to:
J(x) =(x = x2)T(pP?) 1 (x — X°)
+(H(X) = y°) "R (H(x) - y°)



Analysis in Ensemble Space

o The analysis mean w? and covariance A
are:
A=[l+(YO)TRTYP
W =A(Y?)R(y° - 7°)
o Then X = X + XPw2 and P2 = XPA(XP)T.
» Notice that the analysis equations in w
coordinates depend only on the background

ensemble {y”} in observation space and
the observation data y° and R.

e The matrix that is inverted to find A is
k-by-k and has no small eigenvalues.



Asynchronous Observations

o With this formulation, the filter easily
becomes “4D” (properly takes into account
temporal information) when observations
are asynchronous.

 When mapping the background ensemble
members x? into observation space, use
the background state at the appropriate
time for each observation.

o Assumption: a linear combination of

ensemble trajectories is an approximate
model trajectory.



Choice of Analysis Ensemble

« To form the analysis ensemble vectors w7,
add to w? the columns of the symmetric
square root W2 = [(k — 1)A]"/2.

o The analysis ensemble x? = x° + X°w?
then has the correct mean and covariance.

o Other choices are possible, but this choice
minimizes the change (in w, or in x with
PP-norm) between the background and
analysis ensembles.

« Recall that we determine a different w/ for
each grid point, using only observations
from a local region near that grid point.



Weight Interpolation

If the localization distance is large relative
to the grid spacing, overlapping local
regions make nearby analyses consistent.
For a high-resolution model, the overlap
causes a lot of computational redundancy.
Solution: Compute the weights w? on a
coarse grid of analysis points and
interpolate them to the other grid points.

Can improve balance [Yang et al. 2009].



Tapering Observation Influence

o At a given grid point, our local analysis (as
described so far) uses nearby observations
at “full” influence, while distant observations
have zero influence.

o The influence can be tapered more
smoothly from “1” to 0 by multiplying each
diagonal entry o, % in R~ by a factor
0 < a; < 1 that depends on the distance
from the corresponding observation
location to the analysis grid point.

« If R is not diagonal, replace R~" by DR~'D,
where D is diagonal with entries , /a;.



Toy Model Results

o Perfect model test with Lorenz-96 system of
coupled ODEs on a circular lattice:

dXm/dt = (Xmi1 — Xm—2)Xm—1Xm + 8.

o We used a model trajectory as the truth and
add noise to simulate observations.

o We compared our LEKF, using only
observations from within 6 grid points, with
a global ensemble Kalman filter (FEKF) [Ott
et al. 2004].



Global vs. Local Filter

M = model size, k+1 = ensemble size, E = error



Comparison to NCEP (2004) 3D-Var

o We ran the U.S. National Centers for
Environmental Prediction global forecast
model (GSM) at reduced T62 resolution
(about 500, 000 grid points).

o We compared our LETKF analyses with
analyses from NCEP’s 3D-Var system (SSI)
using actual Winter 2004 non-satellite
observations (about 300, 000 per 6 hours).

o We used a 60-member ensemble, 800 km
radius local region, spatially varying
inflation p ~ 1.25 [Szunyogh et al. 2008].
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Computational Speed

o At NCEP, less than 10 minutes of every 6
hour cycle is used for data assimilation.
o Our implementation took about 15 minutes
on a 40-processor Linux cluster.
o The computation time is approximately:
« linear in the number of observations;
« linear in the number of model grid
points;
« quadratic in the number of ensemble
members.



Extensions

o Parameter/Bias Estimation: treat
parameters of M or H as state variables
with time derivative zero (Baek et al. 2006,
2009; Cornick et al. 2009; Fertig et al.
2009).

e Nongaussian Filter: minimize nonquadratic
cost function numerically in ensemble
space (Harlim & Hunt 2007), as in MLEF
(Zupanski 2006).



Conclusions

LETKEF is a relatively simple, efficient, and
flexible framework for reduced-rank data
assimilation that works in practice.

The method is largely model-independent.
It scales well to large systems.

Full citations for references to our group’s
work are on the publications page at:
http://www.weatherchaos.umd.edu

Motto: Forecast globally, assimilate locally.



