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Thought Experiment

You see two clocks, one says 9:30 and one
says 9:40. What is your best estimate of the
current time?

For now, assume the clocks look identical
and no other information is available.

One possible answer: 9:35.

Another possisible answer: about 9:30 with
probability 1/2, and about 9:40 with
probability 1/2.



Thought Experiment

« If we perceive the clock that reads 9:40 to
be more accurate (or less likely to have
failed) than the other, we could consider
9:40 to be more probable than 9:30.

 If we make a nonprobabilistic estimate
(focus of this lecture), it should be closer to
9:40 than 9:30.

e How much closer depends on quantifying
the uncertainties in the clock readings and
what we mean by “best estimate”.

e One notion of “best” is the minimum
variance unbiased estimator (MVUE).



Unbiased Estimators

Suppose we have two independent
observations y; and y» of an unknown
scalar quantity x, with different accuracies.

More specifically, assume each y; is
independently sampled from a distribution
with (unknown) mean x and (known)
standard deviation o;.

An estimator for x is a scalar function

f(1, y)-
It is unbiased if the mean (over different
samples) of f(yy, o) is x.



MVUE

For all ), the statistic Ay + (1 — A)yz is an
unbiased estimator of x.

The variance of this estimator is
A\20% + (1 — \)?05, which is minimized when

A=072/(07% + 03°).
The MVUE for x is
(072y1 + 0,2y) /(072 + 052).

This is also the maximum likelihood
estimate for x if (e.g.) the distributions are
Gaussian and the “prior” is uniform.



Observation Bias

On the previous slides, | assumed that the
observations y; are unbiased: the mean of
the error y; — x is 0.

Real observations are likely to be biased.
Conundrum:

If we know what the bias (the mean of

y; — x) is, we can subtract it from y; to get
an unbiased observation.

If we don’t know what the bias is, then what
is the relationship between y; and x?



Observation (Forward) Operator

o A possible answer to the previous question
is to assume that y; is sampled from a
distribution with mean H;(x); the function H;
is called an observation operator or forward
operator.

o If the same procedure is used to “observe”
x at many different times, one can try to
adjust the function H; to improve the
accuracy of this assumption.

o One may be tempted instead to assume
that some function of y; has mean x, but
this approach is less flexible.



Role of Data Assimilation

e Suppose x is a time-varying vector, and the
available observations at a given time form
a vector y.

» Data assimilation is particularly useful in
cases when y does not contain enough
information to uniquely determine x,
perhaps b/c it is lower dimensional.

o On the other hand, if we are trying to
predict future observations, it helps to have
a model whose state x has enough
information to determine y.



Scalar Optimal Interpolation

o Let's return to the case when x is a scalar,
but plan ahead for the vector case.

» Assume each H; is linear: y; is sampled
from a distribution with mean Hx.

e The MVUE for x is
(01/H1)2y1/Hi + (02/H2) Py2/Ha)
(o1/H1) 2+ (02/H2) 2
 Hio 2yr + Hooy Py
B H120(2 + H220§2 '




Scalar Optimal Interpolation

e Now assume H; = 1 and y; is a background
estimate x° of x, which may be based in
part on some previous observations, while
y» is a new observation y°.

« Replace o2 with P, o5 with R°, and H, with
H; the MVUE is then
(Pb)—1Xb + H(RO)—1yo
(Pb)—1 +H2(Ro)—1
_ o, HRO) (60— Hx?)
(Pb)-1 4+ H2(Ro)-




Vector Optimal Interpolation (Ol)

» Next, assume x and y are vectors and H,
PP, and R° are matrices.

e The MVUE can then be written
x? = xP + G(y° — Hx?)
where
G— [(Pb)—1 4 HT(RO)AH]AHT(RO)A
— PPHT[HPPHT 4+ R
o Here x?is the analysis (“after”) estimate

that takes into account the background
(“before”) xP and the new observations y°.



Data assimilation cycle

Consider now a sequence of observations
and estimates indexed by n, representing
times f, = nAt.

Let M, be a model such that the true state
satisfies x}.; ~ My(x}).

A data assimilation (DA) cycle is
X5 = Xg + Ga(ys — Hx)

Xr?ﬂ = Mn(x7)

An Ol cycle, like 3DVar, typically uses a

background covariance P®, and hence a
gain G, that is independent of n.



Nudging and Direct Insertion

e If G is constant in time but formulated in a
more ad hoc manner than the Ol gain, I'll
call the resulting DA cycle discrete-time
nudging; nudging is usually formulated in
continuous time (limit as At — 0).

e f H=1/and G = /,then xZ = y?; this is
direct insertion.

o Direct insertion also refers to the case when
H maps x to a subset of its coordinates;
then x2 = y9 for observed coordinates and
x& = xP for unobserved coordinates.
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Ol vs. 3DVar

The Ol analysis computes the minimum of
the 3DVar cost function in the case that the
observation operator his linear (H).

3DVar often refers to a minimization
implementation that allows nonlinear h and
may include e.g. preconditioning.

Ol is often presumed to include localization,
where the estimate of x at a given
geographical location is done only with
nearby observations.

Ol with localization was used at NCEP in
1980s [e.g., Derber, Parrish, Lord 1991].



Some Further Ol Perspectives

http://www.ecmwf.int/newsevents/training/
meteorological presentations/pdf/DA/
AssAlg 2 .pdf

http://www.ecnwf.int/newsevents/training/
rcourse notes/DATA ASSIMILATION/
ASSIM CONCEPTS/Assim concepts8.html



