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Introduction

Computational Geometry: The study of efficient algorithms
and data structures for discrete geometric structures:
finite point sets, polyhedra, spatial subdivisions.

Spatial Data Retrieval: Given a finite set of objects (points)
preprocess these objects into a data structure that
supports efficient processing of some given class of queries.

Efficiency: is measured in ferms of the resources used as a
function of the number of entities in the structure:
- Query time
- Space (for the data structure)
- Preprocessing time (usually of secondary importance)
- Update time (for dynamic applications)

1-Dimensional Example: Binary search and binary search tfrees.
Improves O(n) brute-force search to O(log n) time.



Proximity Searching

Nearest Neighbor: Given a point set S cR%and q
Rd, find the point p* € S that is closest to q.

O p* °

(Spherical) Range Queries: Given a query ball,
report all the points that lie within, or the total
weight of points within.

Throughout we assume Euclidean distances.



Challenges

Curse of Dimensionality: Many methods for geometric
retrieval problems have query times that grow exponentially
in dimension (assuming a fixed amount of space).

Lower bounds: Many retrieval problems have known lower
bounds, which imply that more efficient methods cannot
exist.

For example, given a parameter m, where n < m < nd, if O(m)
space is used, then spherical range queries cannot be
answered in substantially less than O(n/(m'/9)) time
[Bronnimann, et. al, 1993].



Approximate Proximity Search

Approx Nearest Neighbor: Givene > Oand q € R9, a
point p € S is an e-nearest neighbor of q if,

dist(q,p) < (1+¢)dist(q,p*),

where p* € S is the nearest neighbor of q.




Approximate Proximity Search

Approx Range Searching: Let B(q,r) denote the
Euclidean ball of radius r centered at q. A set S'is
an admissible solution to an e-approximate range
query if

SNB(p,r(l1-¢))cS = SnB(p,r(l+¢))

B(p.r)

Goal: Return the weight of any admissible solution.



Exact/Approx NN Search

The best exact methods are based on data structures
for range searching.

Query Time Space
Exact log n nd/2
AMNSW'98 (1/€)4 log n n
Clarkson '97 d-1 d-1
Chan '98 (1/€)2 logn | (1/¢)2 nlogn

Any convex body in R4 can be g-approximated by a
polyhedron with (1/¢)¢/2 facets [Dudley 741].



Our Results on e-NN Search

Theorem: (AMMO2) Given a point set S in R9, and O <
£<z,2<¢<y¢1/e, it is possible to build a data
structure of space O(ny“!log v) that can answer ¢ -
NN queries in O(log (ny) + 1/(gy)d-1/2) time.

Y Query Time Space
1/¢  |log n+ log (1/¢) n/gd
2 log n + 1/¢(d-1)/2 n

Note: For low-space version, space is independent of
g, and query time is additive, not multiplicative.
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Exact/Approx Range Search

Best exact approaches are based on cuttings, but

results scale poorly with dimension.
Query Time Space
log n nd/logd n
Exact n(t - 1/d) n
log n + n/m1/d m
Approx [AM'00] | log n + (1/g)3! {

The approximate solution of AM'0O is based on kd-
Trees.



Our Results on e-Range Search

Theorem: (AMMO4) Given a point set S in R9, and O <
£<z,2<¢<y¢1/e, it is possible to build a data
structure of space O(nylog (1/¢)) that can answer
¢ -range queries in O(log (ny) + 1/(gy)d1) time.

vy |Query Time Space
1/¢|log n + log (1/€) |(n/e9)log (1/¢)
2 |logn+1/¢dD)  |nlog (1/¢)

Note: Can be used for answering approximate k-th
nearest neighbor queries in similar time bounds.
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Remainder of the Talk

» General techniques used in efficient
approximate retrieval.

» Approximate Voronoi Diagram (AVD)
+ Applying AVDs to range searching
» Implementation (time permitting)
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Voronoi Diagrams

Given a set S of n
point sites in RY,

Voronoi diagram is a
subdivision of space
Into regions accor-
ding to which site is
closest.

Use point location to
answer NN queries.
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Voronoi Diagrams: Difficulties

High Complexity: In dimension d, it may be
as hlgh as @(n(d/ﬂ)

Computational Issues: Geometric degener-
acies and topological consistency.

Point Location: Optimal solutions only in 2-d.

Question: Are there simpler/faster methods
if we are willing to approximate?

13



Approx Voronoi Diagrams

e-AVD: (Har-Peled '01) . ,
Quadtree-like NI o
subdivision of space.

Each cell stores a o

representative site,

r e S, such that ris ,//
an &-NN of any point . /,l/ A
q in the cell. P \\ i \Lk
e-NN — pt location DAY
|0 \




Approx Voronoi Diagrams

Har-Peled '01: Size:

O(%(Iogn)(logg))

e-NN Queries: Point location in a compressed
quadtree in time
O(Iogﬂj.
e

Arya,Malamatos'02: Multiple representatives

15



Multiple Representatives

Multi-representatives:
Each cell is allowed up
tfo t > 1 representa-

tives.

Tradeoff: cells vs.
representatives.

NN-Query: Pt. Loc. and

distance comp.

N

/

+=2

e
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Basic Tools: WSPDs

Separation factor: s> 2.

Two sets A and B are ‘
well-separated if they
can be enclosed in >sp

spheres of radius r,

whose centers are at
distance least sr.
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Basic Tools: WSPDs

Well-Separated Pair
Decomposition (WSPD):
Given a set of n points and
separation factor s, it is
possible to represent all
O(n?) pairs as O(s%) well-
separated pairs. (Callahan,
Kosaraju '95)




Basic Tools: BBD Trees

Quadtree Box: A box

that can be obtained
by repeatedly splitting

the unit hypercube
into 29 identical boxes.
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Basic Tools: BBD Trees

BBD Tree: Given a set of m
quadtree boxes, we can
build a BBD-tree of size
O(m) and height O(log m)
whose induced subdivision is

a refinement of the box
subdivision. (AMN+98)
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Separation: Intuition

The greater the separation from a set
of points, the fewer representatives
are needed to guarantee that one is

an e-NN.

1 rep 4 reps
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Disjoint & Concentric Balls

Disjoint Ball Lemma: Given disjoint

balls of radii r; and r, separated by L / @
L, the number of representatives ()
needed is d-1

CUCHN ..

Concentric Ball Lemma: Given o
concentric balls of radii r and yr,
the number of representatives r ¢
needed is o -

1/(ey) 2
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Separation: Goal

Low-y: Assume y=2.

Goal: Subdivide space
into O(n) cells. For
each cell of size s,
all sites within
distance 4s can be
enclosed within a
ball whose factor-2
expansion does not
intersect the cell.
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Construction

Create a WSPD with e

separation 4.

For each WSP, create //

a set of quadtree / i (./

boxes whose sizes

depend on the dist \ R SL

from this WSP.

Build a BBD tree for

these boxes. _—
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Achieving Separation

Why does this work?
Suppose that the
points within the 4s
expansion are hot
contained within a
separated ball. Then
there would be a
well-separated pair,
which would force
the cell to be split.
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Selecting Representatives

Two-Step Approach:

- Construct a set of
1/€(d-1)/2 points uniform
onh an infermediate
sphere B.

* Reps are the nearest
neighbors of these
points.




Space Reduction: Sampling

Recall that representatives . .
come from two sources:
- From outside large ball
- From inner cluster
- No points exist in the
remaining "no-man's land"
Idea: Allow more points
info no-man's land, and
make them all reps. .
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Space Reduction: Sampling

Intuition: Use a sample S’
of neld1/2 points in the
basic AVD construction.
We expect O(1/£(d-1)/2)
points of S to lie in no-
man's land.

Representatives: From
outer, inner cluster, and




Bisector-Sensitivity

Recall that the basic
AVD construction
creates quadtree

boxes uniformly
around each WSP.

Idea: Concentrate
boxes along
bisector.
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Bisector-Sensitivity

Bisector Sensitive
Construction: For
each WSP (A,B),
create quadtree
boxes as before,
but only for those
that intersect the
A-B bisector.
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AVDs and Range Searching

Adaptation: AVDs can be adapted
to ferfor'm range searching.
Rather than using just the leaf
nodes, internal nodes are used
as well for answering queries,
where the query size is roughly

v times the size of the
associated cell.

Auxiliary information: Each

intfernal node stores
information about surrounding
region in order to answer
queries.
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Polar kd-trees

With spherical ranges there are two sources
of approximation error:
- radial distance from center
- angular error

I't is possible to tolerate greater angular
error than radial error.
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Polar kd-trees

Polar kd-tree: Build a collection of
hierarchical spatial subdivisions, based on a
polar representation of points relative to
some local center.

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
L

.,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
]
.
.
]
.
L3
.
.
.
‘e
LN

33



Conclusions

e-AVD: A spatial subdivision in which e-NN
queries reduce to point location.

Space Efficiency: Through deterministic
sampling and bisector sensitivity.
- O(log n + 1/g(d-1)/2) time
- O(n) space

AVDs for Other Problems: AVDs for other

objects? AVD-like structures for
inferpolation?

Approximating Voronoi Cells: Some initial
results by Arya and Vignheron.
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Thank youl

The End
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Implementation?

The WSPD construction is not very practical:
- Large constants.

- Bottom-up construction (must know all the
AVDs to construct any part).

- Further study is warranted.

Partial construction: Given the size of the
AVD, it is useful to build/rebuild portions
of the structure. Need for top-down
construction.
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Top-Down Construction

Input: Point set S. Error factor ¢, and number of
representatives t.

Basis: Start with bounding hypercube as cell and all
points of S as candidate nearest neighbors.

Recursive step: Given a quadtree cell C, and a
collection of candidate nearest neighbors U.

- Prune from U all points that cannot be an e-NN
to any point of C.

- If |U|< 1, then done. Otherwise, split C and
recurse.
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How to Prune?

Let p in U be the closest Pe
candidate to the center
of the cell. Let r be
some other candidate.

If forall xinC, if re
dist(x,p) < (1+&)dist(x,r)
then prune r.

This can be solved
numerically.
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Results: Cells vs n,t

S0 Cells (log10) of dim=2,eps=0.1,clus gaus
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Results: cells vs ¢

S0 Cells (log10) of dim=2,pts=100,clus gaus
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