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Computational Geometry: The study of efficient algorithms 
and data structures for discrete geometric structures: 
finite point sets, polyhedra, spatial subdivisions.

Spatial Data Retrieval: Given a finite set of objects (points) 
preprocess these objects into a data structure that 
supports efficient processing of some given class of queries.

Efficiency: is measured in terms of the resources used as a 
function of the number of entities in the structure:
–– Query timeQuery time
–– SpaceSpace (for the data structure)
–– Preprocessing timePreprocessing time (usually of secondary importance)
–– Update timeUpdate time (for dynamic applications)

1-Dimensional Example: Binary search and binary search trees.  
Improves O(n) brute-force search to O(log n) time.

IntroductionIntroduction
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Proximity SearchingProximity Searching
Nearest Neighbor: Given a point set S ⊆ Rd and q ∈

Rd, find the point p* ∈ S that is closest to q.

(Spherical) Range Queries: Given a query ball, 
report all the points that lie within, or the total 
weight of points within.

Throughout we assume Euclidean distancesEuclidean distances.

q

p*
5
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Curse of Dimensionality: Many methods for geometric 
retrieval problems have query times that grow exponentially 
in dimension (assuming a fixed amount of space).

Lower bounds: Many retrieval problems have known lower 
bounds, which imply that more efficient methods cannot 
exist.

For example, given a parameter m, where n ≤ m ≤ nd, if O(m) 
space is used, then spherical range queries cannot be 
answered in substantially less than O(n/(m1/d)) time 
[Brönnimann, et. al, 1993].

ChallengesChallenges
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Approximate Proximity SearchApproximate Proximity Search

Approx Nearest Neighbor: Given ε > 0 and q ∈ Rd, a 
point p ∈ S is an εε––nearest neighbornearest neighbor of q if,

where p* ∈ S is the nearest neighbor of q.

( ) ( )dist q,p 1 dist(q,p*),≤ + ε

q

p*

p
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Approximate Proximity SearchApproximate Proximity Search

Approx Range Searching: Let B(q,r) denote the 
Euclidean  ball of radius r centered at q.  A set S’ is 
an admissibleadmissible solution to an εε––approximate range approximate range 
queryquery if

∩ − ε ⊆ ⊆ ∩ + εS B(p,r(1 )) S' S B(p,r(1 ))
B(p,r)

p

Goal: Return the weight of any admissible solution.



7

Any convex body in Rd can be ε–approximated by a 
polyhedron with (1/ε)(d-1)/2 facets [Dudley 74].

Exact/Approx NN SearchExact/Approx NN Search
The best exact methods are based on data structures 

for range searching.

nd/2log nExact

Clarkson ’97
Chan ’98

n(1/ε)d log nAMNSW’98

SpaceQuery Time

( )
d 1
21/ log n
−

ε ( )
d 1
21/ nlog n
−

ε
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Our Results on Our Results on εε--NN SearchNN Search
Theorem: (AMM02) Given a point set S in Rd, and 0 < 

ε ≤ ½, 2 ≤ γ ≤ 1/ε, it is possible to build a data 
structure of space O(nO(nγγdd--11log log γγ)) that can answer ε -
NN queries in O(log (nO(log (nγγ) + 1/() + 1/(εγεγ))(d(d--1)/21)/2)) time.

log n + 1/ε(d-1)/2

log n + log (1/ε)
Query Time

n2

n/εd1/ε
Spaceγ

Note: For low-space version, space is independent of 
ε, and query time is additive, not multiplicative.
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Exact/Approx Range SearchExact/Approx Range Search
Best exact approaches are based on cuttings, but 

results scale poorly with dimension.

nn(1 - 1/d)

mlog n + n/m1/d

nd/logd nlog n
Exact

nlog n + (1/ε)d-1Approx [AM’00]

SpaceQuery Time

The approximate solution of AM’00 is based on kd-
trees.
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Our Results on Our Results on εε--Range SearchRange Search

Theorem: (AMM04) Given a point set S in Rd, and 0 < 
ε ≤ ½, 2 ≤ γ ≤ 1/ε, it is possible to build a data 
structure of space O(nO(nγγddloglog (1/(1/εε)))) that can answer 
ε -range queries in O(log (nO(log (nγγ) + 1/() + 1/(εγεγ))dd--11)) time.

log n + 1/ε(d-1)

log n + log (1/ε)
Query Time

n log (1/ε)2

(n/εd ) log (1/ε)1/ε
Spaceγ

Note: Can be used for answering approximate k-th
nearest neighbor queries in similar time bounds.
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Remainder of the TalkRemainder of the Talk

• General techniques used in efficient 
approximate retrieval.

• Approximate Voronoi Diagram (AVD)
• Applying AVDs to range searching
• Implementation (time permitting)
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Voronoi DiagramsVoronoi Diagrams

Given a set S of n 
point sites in Rd.

Voronoi diagram is a 
subdivision of space 
into regions accor-
ding to which site is 
closest.

Use point location to 
answer NN queries.
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Voronoi Diagrams: DifficultiesVoronoi Diagrams: Difficulties

High Complexity: In dimension d, it may be 
as high as

Computational Issues: Geometric degener-
acies and topological consistency.

Point Location: Optimal solutions only in 2-d.
Question: Are there simpler/faster methods 

if we are willing to approximate?

( )d/2n .  Θ
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Approx Voronoi DiagramsApprox Voronoi Diagrams

ε-AVD: (Har-Peled ’01) 
Quadtree-like 
subdivision of space. 
Each cell stores a 
representative site, 
r ∈ S, such that r is 
an ε-NN of any point 
q in the cell.

ε-NN → pt location
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Approx Voronoi DiagramsApprox Voronoi Diagrams

Har-Peled ’01: Size:

ε-NN Queries: Point location in a compressed 
quadtree in time 

Arya,Malamatos’02: Multiple representatives

( )d
n nO logn log .  

  ε ε  

nO log . 
 ε 
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Multiple RepresentativesMultiple Representatives

Multi-representatives:
Each cell is allowed up 
to t ≥ 1 representa-
tives.

Tradeoff: cells vs. 
representatives.

NN-Query: Pt. Loc. and 
distance comp.

t=2
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Basic Tools: WSPDsBasic Tools: WSPDs

Separation factor: s > 2.
Two sets A and B are 
well-separated if they 
can be enclosed in 
spheres of radius r, 
whose centers are at 
distance least sr.
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Basic Tools: WSPDsBasic Tools: WSPDs

Well-Separated Pair 
Decomposition (WSPD): 
Given a set of n points and 
separation factor s, it is 
possible to represent all 
O(n2) pairs as O(sdn) well-
separated pairs. (Callahan, 
Kosaraju ’95)

28 pairs

9 WSPs
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Basic Tools: BBD TreesBasic Tools: BBD Trees

Quadtree Box: A box 
that can be obtained 
by repeatedly splitting 
the unit hypercube 
into 2d identical boxes.
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Basic Tools: BBD TreesBasic Tools: BBD Trees

BBD Tree: Given a set of m 
quadtree boxes, we can 
build a BBD-tree of size 
O(m) and height O(log m) 
whose induced subdivision is 
a refinement of the box 
subdivision. (AMN+98)
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Separation: IntuitionSeparation: Intuition

The greater the separation from a set 
of points, the fewer representatives 
are needed to guarantee that one is 
an ε-NN.

4 reps1 rep
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Disjoint & Concentric BallsDisjoint & Concentric Balls
Disjoint Ball Lemma: Given disjoint 

balls of radii r1 and r2 separated by 
L, the number of representatives 
needed is

Concentric Ball Lemma: Given 
concentric balls of radii r and γr, 
the number of representatives 
needed is

Lr1 r2

rγr

( )
d 1
21/
−

εγ

( )( )
d 1

2 2
1 2rr / L

−

ε
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Separation: GoalSeparation: Goal
Low-γ: Assume γ=2.
Goal: Subdivide space 

into O(n) cells. For 
each cell of size s, 
all sites within 
distance 4s can be 
enclosed within a 
ball whose factor-2 
expansion does not 
intersect the cell.
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ConstructionConstruction

Create a WSPD with 
separation 4.

For each WSP, create 
a set of quadtree 
boxes whose sizes 
depend on the dist 
from this WSP.

Build a BBD tree for 
these boxes.
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Achieving SeparationAchieving Separation
Why does this work? 

Suppose that the 
points within the 4s 
expansion are not 
contained within a 
separated ball.  Then 
there would be a 
well-separated pair, 
which would force 
the cell to be split.
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Selecting RepresentativesSelecting Representatives

Two-Step Approach:
• Construct a set of 

1/ε(d-1)/2 points uniform 
on an intermediate 
sphere B. 

• Reps are the nearest 
neighbors of these 
points.

BB
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Space Reduction: SamplingSpace Reduction: Sampling

Recall that representatives 
come from two sources:
– From outside large ball
– From inner cluster
– No points exist in the 

remaining “no-man’s land”
Idea: Allow more points 

into no-man’s land, and 
make them all reps.
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Space Reduction: SamplingSpace Reduction: Sampling

Intuition: Use a sample S’ 
of nε(d-1)/2 points in the 
basic AVD construction.  
We expect O(1/ε(d-1)/2) 
points of S to lie in no-
man’s land.

Representatives: From 
outer, inner cluster, and 
no-man’s land.
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BisectorBisector--SensitivitySensitivity

Recall that the basic 
AVD construction 
creates quadtree 
boxes uniformly 
around each WSP.

Idea: Concentrate 
boxes along 
bisector.
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BisectorBisector--SensitivitySensitivity

Bisector Sensitive 
Construction: For 
each WSP (A,B), 
create quadtree 
boxes as before, 
but only for those 
that intersect the 
A-B bisector.

B
A
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AVDsAVDs and Range Searchingand Range Searching
Adaptation: AVDs can be adapted 

to perform range searching.  
Rather than using just the leaf 
nodes, internal nodesinternal nodes are used 
as well for answering queries, 
where the query size is roughly 
γ times the size of the 
associated cell.

Auxiliary information: Each 
internal node stores 
information about surrounding 
region in order to answer 
queries.
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Polar Polar kdkd--treestrees

With spherical ranges there are two sources 
of approximation error:
– radial distance from center
– angular error

It is possible to tolerate greater angular 
error than radial error.

r
rε

r√ε
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Polar Polar kdkd--treestrees

Polar kd-tree: Build a collection of 
hierarchical spatial subdivisions, based on a 
polar representation of points relative to 
some local center.
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ConclusionsConclusions
ε-AVD: A spatial subdivision in which ε-NN 

queries reduce to point location.
Space Efficiency: Through deterministic 

sampling and bisector sensitivity.
– O(log n + 1/ε(d-1)/2) time
– O(n) space

AVDs for Other Problems: AVDs for other 
objects? AVD-like structures for 
interpolation?

Approximating Voronoi Cells: Some initial 
results by Arya and Vigneron.
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The EndThe End

Thank you!
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Implementation?Implementation?

The WSPD construction is not very practical:
– Large constants.
– Bottom-up construction (must know all the 

AVDs to construct any part).
– Further study is warranted.

Partial construction: Given the size of the 
AVD, it is useful to build/rebuild portions 
of the structure.  Need for top-down 
construction.
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TopTop--Down ConstructionDown Construction
Input: Point set S. Error factor ε, and number of 

representatives t.
Basis: Start with bounding hypercube as cell and all 

points of S as candidate nearest neighbors.
Recursive step: Given a quadtree cell C, and a 

collection of candidate nearest neighbors U.
– Prune from U all points that cannot be an ε-NN 

to any point of C.
– If |U|≤ t, then done.  Otherwise, split C and 

recurse.



38

How to Prune?How to Prune?

Let p in U be the closest 
candidate to the center 
of the cell.  Let r be 
some other candidate.  

If for all x in C, if 
dist(x,p) ≤ (1+ε)dist(x,r) 
then prune r.

This can be solved 
numerically.

p

r

C



39

Results: Cells Results: Cells vsvs n,tn,t
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Results: cells Results: cells vsvs εε


