
Mathematical modeling of heterogeneity
and clonal selection in acute leukemias

Anna Marciniak-Czochra

Institute of Applied Mathematics, BIOQUANT and
Interdisciplinary Center for Scientific Computing (IWR)

Heidelberg University

April 28, 2017



Interdisciplinary collaboration

• Collaborative Research Center (SFB) ”Maintenance and
Differentiation of Stem Cells in Development and Disease”

• Collaboration with Anthony Ho, Natalia Baran and Christoph Lutz
(Department of Medicine V, Heidelberg Univ.)

• Multicompartment models of hematopoiesis and leukemia: with
Thomas Stiehl (IWR/IAM, Heidelberg Univ.)

• Models of fitness selection: with Piotr Gwiazda (University of
Warsaw)



Hematopoiesis



Hematopoiesis



Hematopoiesis and Leukemia



Model of leukemia

Model ingredients

• Transitions between different differentiation stages

• Regulation of the self-renewal vs. differentiation process

• Clonal heterogeneity of cancer

• Mutations?



Model of the healthy cell line



Patients data

• Stress conditions (chemotherapy)

• Bone marrow transplantation (CD34+ cells)

• Blood regeneration

5"1"

ReconstitutionChemo

Transplantation



Model - Hematopoiesis

Key parameters

• Proliferation rates pi

• Fractions of self-renewal ai

• Death rates di



Cell differentiation model

du1

dt
= (2a1 − 1)p1u1,

dui
dt

= (2ai − 1)piui + 2(1− ai−1)pi−1ui−1,

dun
dt

= 2(1− an−1)pn−1un−1 − dnun.

M-C, Stiehl, Jäger, Ho, Wagner, SC Dev 18, 2009



Structured population model: continuous structure

∂tu(x , t) + ∂x [g(x , v(t))u(x , t)] = p(x)u(x , t)

Doumic, M-C, Perthame, Zubelli, SIAM J.Appl.Math., 2011



Model of the feedback

Dynamics of signalling molecules (cytokines; G-CSF)

dS(t)

dt
= α− µS(t)− βun(t)S(t)

Quasi steady state approximation (Tikhonov Theorem)

s(t) =
1

1 + kun(t)
∈ [0, 1],

where s(t) := µ
αS(t) and k := β

µ .



Assumptions on cytokines

Regulation modes

• All regulated cell properties depend linearly on the cytokine
concentration

1 Regulation of proliferation: pi (s(t)) := pi s(t) =
pi,max

1+kun(t)

2 Regulation of self renewal versus differentiation
ai (s(t)) := ai s(t) =

ai,max

1+kun(t)

Application to hematopoietic reconstitution

• Regulation of self-renewal fractions is
the most effective mechanism of
hematopoietic reconstitution



Model validation: Comparison to patients data

• Individual patients
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• Large patient groups

Stiehl, Ho, M-C, Bone Marrow Transplantation 49, 2014



Dynamics of the model

• Trivial steady state - unstable (unless it is the only equilibrium)

• Semi-trivial steady state: (0, ..0, ūk , .., ūn) - linearly unstable iff
there exists a steady state with more positive components

• Unique positive steady state: (ū1, .., ūn) - globally stable ?
• Global stability for the 2-compartment model

L(u1(t), u2(t)) :=
1

p1G(ū2)
L21(t, u1(t), u2(t))+

1

d2
L22(t, u1(t), u2(t))

with G(ξ) = 2(1− a1/(1 + ku2)) and

L21(t, u1, u2) :=
u1

ū1
− 1− ln

u1

ū1
,

L22(t, u1, u2) :=
u2

ū2
− 1− 1

ū2

∫ u2

ū2

G(ū2)

G(ξ)
dξ.

• Hopf bifuraction and oscillations in the 3-compartment model and
in the structured population model.

Stiehl and Marciniak-Czochra, Math. Comp. Models., 2010

Nakata, Getto, M-C and Alarcon, J. Biol. Dynamics, 2012

Getto, M-C, Nakata and dM Vivanco, Math. Biosciences, 2013



Model of leukemia development



Model of leukemia

• Cells compete for spatial (bone marrow niches) or environmental
resources (cytokines).

• Leukemic cells have better fitness (larger self-renewal and/or larger
proliferation...)

Stiehl and Marciniak-Czochra, Math. Mod. Nat. Phenomena, 2012



Development of leukemia

• We start in hematopoietic equilibrium with a small number of
leukemic stem cells (LSC)

• We measure how long it takes until mature hematopoietic cell
counts are reduced by a certain percentage.

• Theorem: Larger self-renewal of LSC always leads to
development of leukemia.



Impact of LSC Properties

Time needed for reduction of mature blood cells by 20%



Impact of LSC and non-LSC Properties

Different LSC Properties

others fixed

Different non-LSC Properties

LSC fixed

Dynamics does not depend on non-LSC properties.



Estimation of LSC properties using patients data



Estimated LSC properties and prognosis

Estimated cell properties correlate with patient survival.

Stiehl, Baran, Ho, M-C, Cancer Research 2015



Development of resistance

LSC properties change between multiple relapses



Models of heterogenous (multiclonal) AML



Clonal evolution (AML and ALL)
Recent Experimental Findings

• Deep sequencing techniques
allow to study the clonality and
clonal evolution patterns in
leukemias (Ding et al, Nature
2012 and Anderson et al
Nature 2011)

• Primary manifestation as well
as relapses involve only few
clones

• 2 major evolution patterns
have been defined:

1. Repeating clones
2. Related but different

subclones.



Multiclonality

Observation:

• Leukemic cell mass consists of multiple clones

• Size of different clones varies over time

Model:

• 1 healthy cell line

• n leukemic clones

• Simplification:
2 compartments

Stiehl, Baran, Ho, M-C, JRS Interface 11, 2014



Clonal selection



Clonal selection



Clonal selection



Clonal selection



Clonal selection



Clonal selection as a dynamical process

• What are cell properties at diagnosis and relapse?

Answer: • Diagnosis: high proliferation + high self-renewal
• Relapse: low proliferation + high self-renewal
• Low proliferation causes resistance to therapy, high

self-renewal guarantees expansion.
• Selection explains different cell properties
• No mutations are required!

• What is the number of clones at diagnosis and relapse?

Answer: • The number of large clones at diagnosis and relapse is
relatively small.

• The nonlinear and nonlocal feedback underlying the
competition limits the number of large clones.

Results are conserved for different feedback mechanisms and
independent on the number of clones



Clonal selection as a dynamical process

• What are cell properties at diagnosis and relapse?
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self-renewal guarantees expansion.
• Selection explains different cell properties
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• What is the number of clones at diagnosis and relapse?

Answer: • The number of large clones at diagnosis and relapse is
relatively small.

• The nonlinear and nonlocal feedback underlying the
competition limits the number of large clones.

Results are conserved for different feedback mechanisms and
independent on the number of clones



Structured population model of clonal
evolution



Model structured by a self-renewal potential

• Let u(x , t) be a clone characterized by an internal parameter:

• x ∈ {x1, ..., xN} (a discrete structure)
• x ∈ Ω (a continuous structure)

∂

∂t
u(t, x) =

(
2a(x)

1 + Kρ2(t)
− 1

)
p(x)u(t, x),

∂

∂t
v(t, x) = 2

(
1− a(x)

1 + Kρ2(t)

)
p(x)v(t, x)− dv(t, x),

where ρ2(t) =
∫
Ω

v(t, x)dx

• Assumptions: p(x) = p, d and K are positive constants

• a ∈ C (Ω) with 1
2 < a < 1



Simulations of a single clone selection



Simulations of multiple clones selection



Main result: Clonal selection

Theorem

(i) Both u1 and u2 converge to measures with support contained in the
set

Ωa = arg max
x∈Ω

a(x) =

{
x̄ ∈ Ω

∣∣∣∣a(x̄) = max
x∈Ω

a(x)

}
as t tends to infinity.

(ii) If Ωa consists of a single point x̄ , then the solution converges to a
stationary measure (Dirac measure multiplied by a positive
constant) concentrated in x̄ .

(iii) If Ωa is a set with positive measure, then the solution converges to
a discontinuous bounded function.

Busse, Gwiazda, M-C. J. Math. Biol., 2015



Dynamics of the clones with heteoregenity in (a, p)

• Dynamically changing maximal growth rate:

max{( 2a(x)
1+kρ2(t) − 1)p(x)}, but the fitness corresponds to max a(x)



Application to therapy and cancer relapse



Cellular Properties at Relapse

Strong Chemotherapy Weak Chemotherapy

• (Sub-)clones already present at diagnosis but not contributing to
cell mass can survive therapy and trigger relapse

• Chemotherapy selects for slowly proliferating cells with high
self-renewal

Stiehl, Baran, Ho, M-C, JRS Interface 11, 2014



Change of clonal size

Data from Anderson et al Nature 2011



Fitting to patient data
The model can be fitted to patient data:

Diagnosis
t=0

Control
t=150

Relapse
t=200

Clone 1 (FLT3-ITD, 39 bp) present 0 0

Clone 2 (FLT3-ITD, 42 bp) 0 present present

Clone 3 (FLT3-ITD, 63 bp) 0 0 present

Genetic Data

Marrow Blast Fraction Clonal Contribution

= Marrow aspiration data



What is the mechanism of selection?



Two regulatory mechanisms

Model 1: Competition for surviving factors Model 2: Competition for space

• The selection takes place in both models.

• How to distinguish between the mechanisms?

Stiehl, Baran, Ho, M-C, JRS Interface 11, 2014



System dynamics for both models

• We fit Models 1 and 2 to the patients data (bone marrow
data + time between treatment and relapse)

• In most cases both models are compatible with observed
dynamics

straight line: Model 1, dotted line: Model 2



Model discrimination

• Fast increase of leukemic cell counts is compatible only with
Model 2.

straight line: Model 1, dotted line: Model 2



Fit to data: Special case

• Cytokine treatment may
stimulate cancer growth (Duval
et al 2014).

• Patient with 2 relapses

• Comparable situation after the
first and the second
chemotherapy

• Cytokine administration only
after the second chemotherapy

• Cytokine administration leads
to a rapid expansion of
leukemic cells

Data from Duval et al.

• Data not compatible with Model 2.



Cytokine sensitivity vs. patient prognosis

• The models may help to
distinguish in a given
patient which
mechanism (cytokine
sensitive vs insensitive
blast expansion) is more
relevant.



Conclusions

• Mathematical model provides a possible explanation of the clonal
selection observed in experimental data.

• Clonal selection may be a dynamic property reducing the number of
relevantly contributing leukemic clones.

• Therapy may lead to a selection of more aggressive clones.

• LSC properties can be estimated using mathematical modelling:

• Estimated cell properties differ between different individuals.
• Estimated cell properties differ between different relapses in

the same individual.
• Estimated cell properties correlate with patient survival.



Thank you!



Sketch of the proof. Boundedness of masses

• Equations for the total mass

d

dt
ρ1(t) =

∫
Ω

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x)dx ,

d

dt
ρ2(t) = 2

∫
Ω

(
1− a(x)

1 + Kρ2(t)

)
pu1(t, x)dx − d

∫
Ω

u2(t, x)dx .

• Estimates using ā = max
x∈Ω

a(x) and a = min
x∈Ω

a(x).

Lemma

Both ρ1 and ρ2 are uniformly bounded and strictly positive.

• We need an estimate ρ1(t) ≤ M1ρ2(t)

• It results from uniform boundedness of U(t, x) = u1(t,x)
u2(t,x)



Sketch of the proof. Positivity of masses

Lemma

There exists a constant M2 > 0 and 0 < γ < 1 such that
ρ2(t) ≤ M2ρ

γ
1 (t) for all t ≥ 0.

•

d

dt

ρ2(t)

ργ1 (t)
≤ 2pM1−γ

2 +
ρ2(t)

ργ1 (t)
(γp − d).

• Taking γp − d < 0 leads to the desired estimate

• The equation for masses yields positivity of ρ1

d

dt
ρ1(t) ≥

(
2a

1 + KM4ρ1(t)γ
− 1

)
pρ1(t),



Sketch of the proof. Exponential extinction of solutions in x /∈ Ωa

Lemma
Let x1, x2 ∈ Ω such that a(x1)− a(x2) < 0. Then,

u1(t, x1)

u1(t, x2)
≤ u0

1(x1)

u0
1(x2)

ep
2(a(x1)−a(x2))

1+KM3
t t→∞−→ 0.

• The Lemma implies that the solution decays exponentially to zero in
all points x except those with maximal value of a(x).

• Strict positivity of masses excludes extinction of the solution

• Together with boundedness of mass, it leads to the conclusion that
the model solutions converge to Dirac measures localised in points
corresponding to the maximum of function a.



Sketch of the proof. Convergence of solutions

Theorem
It holds (ρ1(t), ρ2(t))→ (ρ̄1, ρ̄2), as t →∞, where (ρ̄1, ρ̄2) are
stationary solutions of the corresponding ordinary differential equations
model with the maximal value of the self-renewal parameter

0 =

(
2ā

1 + K ρ̄2
− 1

)
pρ̄1,

0 = 2

(
1− ā

1 + K ρ̄2

)
pρ̄1 − d ρ̄2.

• Proof is based on the Lyapunov function for the discrete model

Getto, M-C, Nakata and dM Vivanco, Math. Biosci., 2013



Sketch of the proof. Comparison result

• Our system can be rewritten as

d

dt
ρ1 =

(
2ā

1 + Kρ2
− 1

)
pρ1 +

2p

1 + Kρ2

∫
Ω

(a(x)− ā) u1dx ,

d

dt
ρ2 = 2

(
1− ā

1 + Kρ2

)
pρ1 +

2p

1 + Kρ2

∫
Ω

(ā− a(x)) u1dx − dρ2

Lemma

Let u be a solution of du
dt

= F (u) with a globally stable stationary solution ū
and let V (u) be a Lyapunov function for this equation with compact level sets
and the minimum δ achieved at the stationary solution ū. If ũ is a solution of
dũ
dt

= F (ũ) + f , where f ∈ L1(R+), then ũ → ū for t →∞.

• ∫
Ω

(a(x)− ā) u1(t, x)dx
t→∞−→ 0, since∫

Ω

(a(x)− ā) u1dx =

∫
Ωa

(a(x)− ā) u1dx +

∫
Ω\Ωa

(a(x)− ā) u1dx .



Convergence result in flat metric

• For µ, ν ∈M+(R+) the flat metric ρ is defined by

ρF (µ, ν) := sup
{∫

R+ ψ d(µ− ν)
∣∣∣ ‖ψ‖W 1,∞ ≤ 1

}
.

• To estimate the distance between a solution u(t, x) and the
stationary measure cδx̄ , we use the following inequality for the
distance of two measures µ1 and µ2

ρF (µ1, µ2) ≤ min{ρ1, ρ2}W1(
µ1

ρ1
,
µ2

ρ2
) + |ρ1 − ρ2|,

where W1 is the Wasserstein metric

• Convergence results from the exponential estimates and
convergence of masses.



Model calibration

Available data

• Initial conditions

• Proliferation rates in a steady state

• Steady state population sizes

• Clearance of leukocytes from blood stream

Initial conditions
Cell Type number of transplanted cells per kg body weight

prim HSC 1 ≈ 3 · 103

LTC-IC ≈ 36 · 103

CFU-GM ≈ 155 · 103

CFU-G ≈ 54 · 104

Myeloblast 0

Promyelocyte 0

Myelocyte 0

Mature neutrophil 0



Parameter sets

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

a1 0.5 a1,max 0.77 p1 2.15 · 10−3 1
day

p1,max 7.6 · 10−3 1
day

d8 0.6925 1
day

a2 0.4993 a2,max 0.7689 p2 11.21 · 10−3 1
day

p2,max 39.6 · 10−3 1
day

k1 6 · 10−9

a3 0.4779 a3,max 0.7359 p3 5.66 · 10−2 1
day

p3,max 0.2 1
day

k2 12.8 · 10−10

a4 0.4986 a4,max 0.7678 p4 0.1586 1
day

p4,max 0.56 1
day

a5 0.1 a5,max 0.154 p5 0.32 1
day

p5,max 0.32 1
day

a6 0.0714 a6,max 0.11 p6 0.7 1
day

p6,max 0.7 1
day

a7 0.3929 a7,max 0.605 p7 1 1
day

p7,max 1 1
day

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

a1 0.5 a1,max 0.77 p1 2.15 · 10−3 1
day

p1,max 7.6 · 10−3 1
day

d8 0.6925 1
day

a2 0.4994 a2,max 0.769 p2 11.21 · 10−3 1
day

p2,max 39.6 · 10−3 1
day

k1 6 · 10−9

a3 0.4743 a3,max 0.7304 p3 5.66 · 10−2 1
day

p3,max 0.2 1
day

k2 12.8 · 10−10

a4 0.4982 a4,max 0.7673 p4 0.1586 1
day

p4,max 0.56 1
day

a5 0.4286 a5,max 0.66 p5 0.32 1
day

p5,max 0.32 1
day

a6 0.0714 a6,max 0.11 p6 0.7 1
day

p6,max 0.7 1
day

a7 0.0357 a7,max 0.055 p7 1 1
day

p7,max 1 1
day



Is this reasonable?

• low self-renewal of non-LSC ⇒ small intermediate population
but high percentage differentiates to blast stages

• high self-renewal of non-LSC ⇒ large intermediate population
but low percentage differentiates to blast stages.


