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Asteroid Eros (23 km)!

Asteroid Itokawa (350 m)!

Asteroid Mathilde  (50 km)!

1.3 g/cm3! 2.7 g/cm3!

1.9 g/cm3!

C-type!
low albedo !
(<0.1)!

S-type!

S-type!
high albedo !
(> 0.15)!

Great diversity of structures 

 ⇒bulk density:  
smaller for lower albedo objects 

Presence of regolith on all these bodies 

Note: even two bodies of 
same spectral type  
can be very different! 







!   Solve conservation equations (using your favorite numerical 
method) 
- mass conservation 
- momentum conservation 
- energy conservation 

!   Define material properties 
- equation of state 
- elasticity/plasticity model 
- damage model 
- NEW: model of microporosity  
- ... 

laboratory experiments 
+ 
characteristics of small bodies !   Testing and testing 

- analytical solutions 
- laboratory experiments 
- code comparisons 
- observations/measurements in situ 
- ... 

Numerical Simulations of the 
fragmentation phase 



P>>ρ c2!

Single species EOS!
e(P, ρ)!

Mixture Theory!
(including porosity)!

Single species EOS!
e(P, ρ)!

Flow & Failure!Yield! Fracture!

Yield surface, !
Flow rule! Fracture Criteria!

Stress-Strain Equations! P~ρ c2!

P<<ρ c2!

EOS!

Solids!

Flow, 
fracture, 
failure!









Shear strength 

Pressure 
Tensile region Compressive region 

Water 

Sand 
“Angle of Friction” 

Cohesion 

Rocks 



Tensile!
strength 

Cohesion!

ANGLE OF FRICTION 

Some real data 







•  “Degraded Stiffness”, no explicit flow or fracture.!

•  “Flow” including plasticity and damage, used to model 
microscopic voids and cracks leading to an inability to 
resist stress.!

•  “Fracture”, involving actual macroscopic cracks and 
voids which are tracked, leading to an inability to resist 
stress.!



Special nature!

But Attractive Physics 





Strength v. Strain Rate 
from Various Studies
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Concrete (plain)

Concrete (polyester)

Limestone (Oakhall)

Oil Shale (80ml/kg)

Arkansas Novaculite

Westerly Granite
(Lipkin)

H&H Granite (Crack
Distribution)

Fully Cracked, Large
(Various Materials)

Melosh et al. (Basalt)

Dresser Basalt

Benz and Asphaug,
1994

Codes	



Low  
strain rate 

High 
strain rate 

(From Asphaug) 





• Therefore, material failed by the outgoing shock 
behaves as water.!

• Damage is isotropic, so that when a crack is formed 
in one directions, all directions lose stiffness!

• As damage accumulates, the stiffness in both 
tension and in shear decrease, eventually to zero. 

• Calibrated to disruption test, by adjusting the strength !
(Weibull) parameters!



σαβ = -P δαβ + Sαβ 

Sαβ = µ(εαβ – 1/3 εγγδαβ) 

Conservation equations  

Equation of state 
P=f(E,ρ) 

Model of brittle 
Failure  

Yielding criterion: 
Sαβ → f Sαβ  

SPH techniques 

Stress tensor 



Validation with impact experiments on basalt 

Nakamura & Fujiwara 93 

dust removed 

largest fragment as a function of impact angle 

→ SPH simulations using 3.5×106 particles 

Benz & Asphaug 1994!
High-res. Runs by M. Jutzi!



Fragmentation
Phase 

Shock wave 
Propagation 

Impact 
velocity:  
5 km/s 

Impact angle: 
45° 

P. Michel & W. Benz 



Why porosity 
is important 

Ref: Consolmagno, Britt 

Tempel 1 

Itokawa 



Internal structure 

→  the internal structure will determine the ability to survive an impact 
→ the structure within some depth will determine    
- size and geometry of crater    
- amount of ejected mater   
- velocity of ejected matter     

→  momentum transfer 

size of computational element 



Two types of porosity:  

•  Macroscopic scale:  

• Void sizes can be modeled explicitly 

• Rock components are not porous and there fragmentation is driven by classic 

model of brittle failure of non-porous material 
•  Microscopic scale:  

• Void/pore sizes are smaller than the thickness of the shock front 
• Void/pore sizes are smaller than the numerical resolution 
• Fragmentation modeled using the so-called P-α (Herrmann 1968) or ε-α or ρ-α 
model 

•     assumes uniform and homogeneous porosity...  



From Asphaug et al. 1998, Nature 393. 

Macro 
porous 



Volume of voids: Vv 

Volume of matter: Vs 

Total: V=Vs+Vv 

Void ratio (Porosity): φ=Vv/V 

Solid ratio: β=Vs/V=1- φ 

Distension: α=V/Vs=1/ (1-φ) 

Mass of solids: ms 

Density of mixture: ρ= ms/V 

Density of solid: ρs= ms/Vs 

Distension: α= ρs/ρ 

Porosity: φ =1-1/ α	



Concepts 



Definition: 

→ porosity:  
With  VV : Volume of voids 

 VS : Volume of matrix 
        V :  total volume 
        ρs :  density of matrix 

 ρ  :  bulk density 

Type of porosity:  

•  macroscopic scale: modeled explicitly using the classical model of brittle fail. 
•  microscopic scale: modeled using the so-called P-α model (Herrmann 1968) 

   assumes uniform and homogeneous porosity...  

→ distension:  

Distention is defined as a function of pressure:  
α = α(P); but it can also be defined as a function of 
density or strain 

→  



Pressure p 

Distension  α 
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Elastic curve 
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More solid 

More void 

Concepts 

Initial state 



Time evolution of distention: 

→ equation of state: 

→ deviatoric stresses: 

→ fracture model: 

Distention is used to modify the following equations: 



As the pores are crushed, the material is slowly turned into sand (at the 
scale of the numerical resolution element). 

total damage = tension damage (Weibull flaws) + compression damage (breaking pores) 

Since both damage D and distension α are volume ratios, we can 
relate the two by (linear relation)  

regularization needed to 
avoid divergence at α=α0 

Time evolution: 



Impact speed: 3 km/s 

Jutzi, Michel, Hiraoka, Nakamura, Benz, 2009, Icarus 201 

Différent kinds of porosity 

Damage propagation (red) 
from the numerical simulation  
with porosity model 

Initial material properties are  
those measured for the real target 



T = 1.5 ms!Experiment! Simulation!

Jutzi, Michel, Hiraoka, Nakamura, Benz, 2009, Icarus 201 

First validations of a model of fragmentation of porous body 



T = 8 ms!Experiment! Simulation!

First application at large scale: formation of  
the crater on the asteroid Stein (Rosetta image) 

Jutzi, Michel, Benz 2010. A&A 509, L2 





Michel et al., Science 294 (2001) 

Michel et al., Nature 421 (2003) 

Our simulations of asteroid disruptions reproduced for the 
first time asteroid families and suggest that objects > km are 
gravitational agregates (rubble piles) 

Disruption outcomes and impact energies greatly depend 
on the initial internal structure of the impacted body 

Internal structure of small bodies:  
Characterisation and role 



 
 

 
 
 

 
 

 
The Near -Earth Object Impact Hazard:  

Space Mission Priorities for Risk Assessment and Reduction  
 
 

Near -Earth Object Mission Advisory Panel  
Report to ESA  

 
 

June 2004  
 

 

•  Example: Mission Don Quijote: phase A studies at ESA 
(final presentation: 17-18 Avril 2007) 

The momentum transfer efficiency highly  
depends on the (sub)surface properties (e.g.  
porosity, regolith properties) 



Projectile Mass ratio: 

Max. number of 
SPH particles: 

➔ We cannot simulate the 
whole asteroid 

One SPH particle 



Simulated domain 

The size of the simulated 
domain (half-sphere) should be 
larger than the size of the 
damaged region 

Global effects can not be 
studied easily 

Current difficulties in modeling 



Target: 

‣ half-sphere of 34 m 
diameter 

‣ 4.4 106 SPH particles 

‣ spatial resolution      ~ 15 
cm 

1) pre-shattered 2) micro-porous 

3) macro-porous 4) macro- and 
micro-porous 



Simulations 
after 20 ms  

Red: fully 
damaged material 

1) pre-shattered 2) micro-porous 

3) macro-porous 4) macro- and 
micro-porous 

Simulations and plots  
made by M. Jutzi 



Simulations 
after 20 ms  

Colors: vertical 
velocity 0.1 to 103 
m/s (log-scale) 

1) pre-shattered 2) micro-porous 

3) macro-porous 4) macro- and 
micro-porous 

Simulations and plots  
made by M. Jutzi 
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•  Normalized with the momentum of the projectile: 

•  Change of the target velocity 



•  Momentum multiplication factor 

‣  Target structure  
‣  Material characteristics 
‣  Impact velocity 
‣  Target size etc. 

from scaling laws: 



Escape velocity 

⇒ Momentum multiplication factor β 



1: pre-shattered 
2: micro-porous 
3: macro-porous 
4: macro- and micro-porous 





Numerical Model, S. Schwartz 



N-­‐body	
  code	
  (pkdgrav)	
  is	
  used	
  to	
  simulate	
  
forces	
  between	
  par7cles:	
  





•  STEP	
  ONE:	
  Placement	
  of	
  bo?om	
  layer	
  and	
  outside	
  
middle	
  layer	
  atop	
  a	
  wall.	
  

•  STEP	
  TWO:	
  Adjust	
  to	
  avoid	
  overlaps	
  and	
  a?ach	
  
springs,	
  drop	
  in	
  remaining	
  beads	
  that	
  will	
  comprise	
  
the	
  rest	
  of	
  middle	
  layer	
  by	
  introducing	
  uniform	
  
gravity	
  (self-­‐gravity	
  is	
  off).	
  

•  STEP	
  THREE:	
  Introduce	
  (translucent)	
  wall	
  that	
  pushes	
  
middle	
  layer	
  into	
  configura7on.	
  

•  STEP	
  FOUR:	
  Drop	
  top	
  layer	
  on	
  top.	
  





Thank you!!

Porous versus non-porous!!


