GRANULAR DYNAMICS ON ASTEROIDS

Derek C. Richardson University of Maryland

Overview

- Main topic: simulating granular dynamics with aim of applying method to asteroid surfaces.
 - HSDEM approach.
 - Test cases: model atmosphere, vibrating plate, tumbler, avalanche.
 - Modeling cohesion.
 - SSDEM approach.
 - Preliminary results.

Richardson et al. 2011, Icarus 212, 427. http://www.astro.umd.edu/~dcr/reprints.html

Why investigate granular material?

- Surfaces of planets and small bodies in our solar system are often covered by a layer of granular material.
- Understanding dynamics of granular material under varying gravitational conditions is important in order to:
 - 1. Interpret the surface geology of small bodies.
 - 2. Aid in the design of a successful sampling device or lander.

Numerical Approach

- Need to combine granular physics and complex forces.
- To do this, we use a modified version of PKDGRAV, a well-tested, high-performance *N*-body code.
- Original modifications aimed at planetesimal dynamics using self-gravitating smooth spheres.
 - This is a hard-sphere discrete element method (HSDEM).
 - Can this be used successfully to model granular dynamics?
 - Validate numerical approach by comparing with lab experiments.
 - HSDEM successful in dilute regime.
 - Need soft-sphere DEM (SSDEM) for dense, near-static regime.
- Goal: develop hybrid HS/SSDEM suitable for wide range of applications.

Granular Dynamics with HSDEM

 Typically have no interparticle forces: particles only feel collisions and uniform gravity field:

$$\ddot{\mathbf{r}}_i = -g\hat{\mathbf{z}}$$

- Could solve equations of motion analytically, but want to allow for complexity (e.g. self-gravity, cohesion, etc.).
- Leapfrog remains advantageous for collision prediction.
- Tree code and parallelism speed up neighbor searches.
- But, no resting contact forces: best in dilute regime.
- And, need walls! (particle confinement).

Walls

- Approach: combine wall "primitives" in arbitrary ways.
- Each wall has an <u>origin</u> and <u>orientation</u>.
- May also have translational <u>velocity</u>, oscillation <u>amplitude</u> and <u>frequency</u> (in orientation direction only), and <u>rotation</u> (around orientation axis, if symmetric).
- Each wall also has ε_n , ε_t , a drawing <u>color</u>, and configurable <u>transparency</u>.
 - Particles can stick to a wall ($\varepsilon_n = 0$), even if moving/rotating, or be destroyed by it ($\varepsilon_n < 0$).
 - NOTE: In HSDEM, surface "friction" (ε_t) is really an instantaneous alteration of particle's transverse motion and spin on contact.
- Walls have infinite mass (unaffected by particles).

Walls

- Collision condition: |r_{impact} c| = s, where c is the point of contact on the wall, which depends on the wall geometry.
- Following geometries supported:

Geometry	Unique Parameters	Degenerate Cases
Plane (infinite)	none	none
Triangle (finite)	vectors to 2 vertices	point, line
Rectangle (finite)	vectors to 2 vertices	point, line
Disk (finite)	radius, hole radius	point
Cylinder (infinite)	radius	line
Cylinder (finite)	radius, length, <i>taper</i>	point, line, ring
Spherical shell (finite)	radius, opening angle	point

Plane/Disk Impact Geometry

Cylinder Impact Geometry

Example Configuration

Ray-traced with POV-Ray

wall type plane transparency 1

wall type disk origin -1 0 0.2 orient 0 0 1 radius 0.5

wall type cylinder-finite origin -0.5 1 0.5 radius 0.2 length 0.8

wall type shell origin 0.5 1 0.5 radius 0.3 open-angle 90

wall type rectangle origin 0.5 0 0.2 vertex1 -0.6 0.6 0 vertex2 0.6 0.6 0

Example

- Drop ~1000 particles in cylinder.
- NO dissipation (walls or particles).
- Particle masses 1, 3, 10 (all same radius).
- Expect <u>energy equipartition</u>, leading to a vertical probability distribution:

$$P_m(z) \propto \exp\left(-\frac{z}{h_m}\right),$$

where $h_m = (2/5) \langle E \rangle / mg$, and $\langle E \rangle = E/N$ is the mean particle energy (KE + PE).

Height (normalized)

Test: Vibrating Plate (Murdoch et al. 2011, submitted)

Berardi *et al*. 2010: vibrate densely packed layer of particles (3mm and 2mm) at nearly close packing (~85%).

Note: Figure not to scale.

Grains, Boundaries, & Strings

We correctly model grains, grain boundaries, and "strings." 85% total coverage and 3% small particle additives.

Purple: near hexagonal particle packing.

Red: more disordered packing (i.e. GB regions).

[†]Berardi et al., 2010

* Murdoch *et al.*, 2011 (submitted)

Test: Tumbler

- Attempt to replicate experiments of Brucks et al. (2007).
- Idea: rotate short cylinder (radius R, half-filled with beads) at various rates. Measure dynamical angle of repose.
- Theory: response is a function of the "Froude" number

$$\mathrm{Fr} = \frac{\Omega^2 R}{g}.$$

• E.g. $Fr = 1.0 \rightarrow centrifuging$.

Test: Tumbler

- 3-D simulation (cylinder is about a dozen particle diameters long).
- Wall roughness provided by gluing particles to inner wall (experiments used coarse sandpaper).
- Movie: <u>Fr = 0.5</u>.

Test: Tumbler

Avalanche: Experiment

Different morphologies at end of drop-tower flight (after 4.7 s):

Hofmeister et al. 2009

- Above were experiments with GLASS beads (size: 0.1–0.2 mm).
- Avalanches are SHORTER with decreasing gravity -> cohesion.

Avalanche: Simulation

Ig until Drop

HSDEM Successes and Failures

- HSDEM works well in hot, dilute "gas" regime, less well in cold, dense regime.
 - E.g. Dynamic repose angles too low in tumbler experiments.
- What is missing is "stickiness" and "true" surface friction.

Modeling Weak Cohesion

 Add simple Hooke's law restoring force between nearby particles.

- Deform elastically up to maximum strain (spring rigidity set by Young's modulus).
- Other force laws can be implemented, e.g. van der Waals.

Weak Cohesion in Granular Fluids

Soft-sphere Discrete Element Method (SSDEM): Stephen Schwartz

- Cf. Cundall and Strack 1979; Cleary 1998.
- Allow (spherical) particles to penetrate.
 - Resulting forces depend on relative velocities, spins, and material properties of particles.
- Use neighbor finder to find overlaps in ~O(N log N) time.
 Also works in parallel.
- Strategy: let $x = s_p + s_n |\mathbf{r}_p \mathbf{r}_n|$. Overlap means x > 0.

Normal Restoring Force

• Overlapping particles feel a normal restoring force:

$$\mathbf{F}_{N,\text{rest}} = -(k_N x)\hat{\mathbf{n}}, \quad \hat{\mathbf{n}} \equiv (\mathbf{r}_p - \mathbf{r}_n) / |\mathbf{r}_p - \mathbf{r}_n|.$$

- Here k_N is a constant that can be tuned to control the amount of penetration.
- This example uses Hooke's law (linear in x); other forms easily included.

Tangential Restoring Force

• Overlapping particles also feel a tangential restoring force:

$$\mathbf{F}_{T,\text{rest}} = k_T \mathbf{S}.$$

- Here **S** is the vector giving the tangential projection of the spring from the equilibrium contact point to the current contact point.
- The tangential direction comes from the total relative velocity at the contact point:

$$\hat{\mathbf{t}} = \mathbf{u}_T / |\mathbf{u}_T|$$
, where $\mathbf{u}_T \equiv \mathbf{u} - (\mathbf{u} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$, and
 $\mathbf{u} = \mathbf{v}_p - \mathbf{v}_n + l_n(\hat{\mathbf{n}} \times \boldsymbol{\omega}_n) - l_p(\hat{\mathbf{n}} \times \boldsymbol{\omega}_p)$.
 $\hat{\mathbf{n}}$
Moment arms from particle centers
to effective contact point.

Kinetic Friction (Damping)

• Use "dashpot" model:

$$\mathbf{F}_{N,\text{damp}} = C_N \mathbf{u}_N,$$
$$\mathbf{F}_{T,\text{damp}} = C_T \mathbf{u}_T,$$

• Here C_N and C_T are material constants. If the desired coefficient of restitution is ε_N , have:

$$C_{N} = -2(\ln \varepsilon_{N}) \sqrt{\frac{k_{N}\mu}{\pi^{2} + (\ln \varepsilon_{N})^{2}}},$$

where μ = reduced mass = $m_p m_n / (m_p + m_n)$.

Static Friction

• Maximum supportable tangential force at contact point:

$$\mathbf{F}_{T,\max} = \left(\mu_s \left| \mathbf{F}_N \right| \right) \left(\mathbf{S} / \left| \mathbf{S} \right| \right),$$

where μ_s is the coefficient of static friction and $\mathbf{F}_N = \mathbf{F}_{N,\text{rest}} + \mathbf{F}_{N,\text{damp}}$.

 If |F_T| > |F_{T,max}|, S is set to zero (other strategies possible); here F_T = F_{T,rest} + F_{T,damp} affects spins and velocities of particles, conserving total angular momentum.

Rolling Friction

Induced torque due to rotational friction:

$$\mathbf{M}_{\text{roll}} = \mu_r \frac{\mathbf{F}_N \times \mathbf{v}_{\text{rot}}}{\left|\mathbf{v}_{\text{rot}}\right|},$$

where μ_r is the coefficient of rolling friction and

$$\mathbf{v}_{\rm rot} \equiv l_n(\hat{\mathbf{n}} \times \boldsymbol{\omega}_n) - l_p(\hat{\mathbf{n}} \times \boldsymbol{\omega}_p).$$

General SSDEM Equations

• Putting it all together,

$$\mathbf{F}_{p} = \mathbf{F}_{N} + \mathbf{F}_{T},$$
$$\mathbf{M}_{p} = l_{p}(\hat{\mathbf{n}} \times \mathbf{F}_{T}) + \mathbf{M}_{\text{roll}}.$$

- Similar expressions hold for the neighbor particle, by momentum conservation.
- We are currently implementing twisting friction as well, in order to damp relative spin around the contact normal.

SSDEM with Walls

- Big advantage of SSDEM: do not need to *predict* particleparticle and particle-wall collisions: just detect the *overlap*.
- This comes with a price: timestep h must be small enough to ensure the overlap is detected.
- But, can handle more complicated geometries (e.g. cone).

Example: Forcing Particles in a Funnel

Example: Sandpile

Example: Sandpile (No Friction)

Example: Cratering

Example: Cratering (Low-energy)

Example: Hopper (N = 155,000)

Example: SSDEM + Springs

Summary and Future Directions

- We have adapted the *N*-body code PKDGRAV to allow for exploration of problems in granular dynamics.
- Hard-sphere DEM works well in the diffuse regime.
- Soft-sphere DEM provides more realistic friction in the dense regime.
- Goal is to construct flexible, general, efficient, accurate, hybrid HS/SSDEM for simulating wide variety of problems.