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Jamming Phase Diagram
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Simulations of Jamming
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Jamming along the ¢-axis

V(F) V(r) V(F)
A A A
shrink— <—grow
Local
minimum _
> > 7 r
0 2 0 Mechanically stable 0 Degenerate "
packing minima

overlapped Mechanically stable non-overlapped
packing



Focus Questions

e Are jammed packings points or continuous geometrical
families in configuration space?

* Are jammed packings equally probable? If not, what
determines their probabilities? How do the probabilities
depend on packing-generation protocol?

 Can the vibrational response be determined from static
jammed packings?
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What are jammed granular packings?
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Distinguishing features of granular meida: athermal, dissipative, driven



Jammed = mechanically stable (MS) configuration
with extremely small particle overlaps;
net forces (and torques) are zero on
each particle; stable to small
perturbations



Disorder versus Order
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Are jammed packings points in configuration space?






Deposition Algorithm in Simulations
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*All geometric parameters identical to those for experiments
*Terminate algorithm when F_ < F . =101

*Vary random initial positions and conduct N .., = 108 to find ‘all’
mechanically stable packings for small systems N=3 to 10.
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Mechanically Stable Frictionless Packings
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*Distinct MS packings distinguished by particle positions 17
*# of constraints = # of degrees of freedom



Configuration Space of Mechanically Stable Packings
R={F,F....,7 }
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*AR = distance in configuration space between distinct MS packings
*AR = error in measuring distinct MS packings
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* MS frictionless packings are discrete points in configuration space
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Discrete MS Packings
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How 1s the quantitative agreement between sims and exps”?
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*05% of distinct MS packing match; others are unstable 1n sims



Are jammed packings equally probable?



Sorted Probabilities

simulations

experiments
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7 (4) orders of magnitude variation in probabilities in simulations (experiments)



MS Packing Probabilities Are Robust
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e Rare MS packings in exps are rare in sims; frequent MS packings in exps are
frequent in sims



What determines the packing probabilities?



Protocol Dependence of Granular Packings
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Rate dependence and basin volume
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Density landscape for hard spheres
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Method 1 (small 1): Probability to return to a given MS packing
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Distinct N=4 Packings




Particle-label permutations




Method 2 (large 1): Random 1nitial conditions
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Basin Volumes
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Weighted/Unweighted basin profile functions
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*Probability of MS packing determined by large 1, not core region 1.
e[Large probability near peak in MS packing separation distribution



Floaters
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Future Directions

*Probability for MS packings determined by large I, not
nearby regions of configuration space

*Study ¢, and quench rate dependence of probabilities




Vibrational Response in Granular Media
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Figure 1: [left] Sound (force) propagation at 4 times and [right] frequency response to a
sinusoidal vertical compression of a packed composite material under constant pressure.



Harmonic Solids
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*Atomic and molecular systems

*Pair potentials have “double-sided” minimum and are long-ranged
*Equilibrium positions are well-defined

*Vibrations at low T captured using harmonic approximation



Causes of nonharmonicity in granular solids

* Nonlinear Hertzian interaction potential X
e Dissipation from normal contacts X

* Sliding and rolling friction D'¢

e Inhomogeneous force propagation

» Breaking existing contacts and forming new contacts



Model Particulate Media
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Harmonic approximation: Normal Modes from
Dynamical Matrix
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Calculate d N- d eigenvalues; m, = 0% > 0.



Density of Vibrational Modes via Dynamical Matrix
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D(w)dw=N(w+dw)-N(o) *Why D(®@) ? |
eFormation of plateau in D(®)
(excess of low-frequency modes)

as Ad¢=0-¢,—0

A.J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, “The jamming scenario--an introdcution and outlook,” Soft Matter (2010).



Are jammed particulate systems harmonic?

* Deform system along each ‘eigenmode’ ®,
e Run at constant NVE, measure power spectrum of grain displacements

* Does system oscillate at frequency ®. from dynamical matrix?



Power-spectrum of particle displacements

Single-sided repulsive springs Double-sided springs
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e System becomes strongly nonharmonic at extremely small 0
e First spreads to "harmonic’ set of @ (NH1); then continuum of ® (NH?2)









Strongly Anharmonic Behavior
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Are large jammed packings composed of highly probable sub-systems?




Delaunay triangle packings
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Pn(ANy)

Distribution of tile numbers




0.25

* Average values converge quickly with N
* "Compatibility’ rules determine large N values



Future Directions

e Form triangles, quadrilaterals, pentagons,... out of all links
(from Delanauy triangulation) that surround particles.



When do jammed packings form continuous
geometrical families?



Continuous Range of Boundary Conditions, L
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Continuous Range of Boundary Conditions, L. to L

1. Enumeration: large
number of unrelated
L (sim)

2. Dynamics:
Quasistatic
compression/
decompression
(sim,exp)
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How do slow, dense shear flows sample
MS packings...with equal probability?

Quasi-static Couette Shear Flow ¥ — 0

B. Utter and R. P. Behringer Phys. Rev. Lett. 100 (2008) 203302
H. A. Makse and J. Kurchan Nature 415 (2001) 614



Quasi-static shear flow at zero pressure

e 28
B
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Initialize MS packing at zero shear strain
Take small step shear strain x,” = x, + Ayy;
Minimize energy
Find nearest MS packing at P=0 using growth/shrink procedure
Repeat steps 2, 3, 4
V1 V1
/\
N
0 . r 0 R 4




Quasistatic Shear Flow at Zero Pressure




Geometric Families Exist over Continuous Range of y
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*Rearrangement events cause system to switch geometric families



Complete Family Tree
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—— complete family tree

—— deterministic evolution of all y=0 packings

Small systems sample only negligible fraction of
available geometric families!
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Noise-generation Mechanism: Collinear Particles
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Frictional Geometric Families
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Sticky Disks

no overlap

e R,=R +R,

*Study C/e — 0 limit
*50 - 50 binary mixtures of disks with R,/R,=1.4






Bond Percolation
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Rigidity Percolation Exponents
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Contact Percolation in Repulsive Disks




Percolation Critical Exponents

Nature sticky repulsive | p i (a=3) | Rod (a=6)
disks
n 1.127 0.734 0.479
o 0.558 0.676 0.520 0.381
D 1.89 1884£0.04 | 1.907+0.013 | 1.900:0.004  1.908+0.018
T 2.06:0.02 | 2.04+004 | 201003 | 199:003 | 1.97+0.03
v 1.6:0.1 1924003 | 1.376£0.065 | 1.404£0.055 | 1.420+0.044




Cyclic Compression and Decompression




Packings of ellipse-shaped particles
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Pairwise Repulsive Interactions: True Contact Distance




Average Contact Number

annealing

5.5 |

compression

Isostatic condition for ellipsoids:

(2),
N(2d-1)=N -

4.5 }
(z), =2(2d-1)

XY
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* Not a discontinuous jump from <z> =4 to 6.
e Quartic modes to the rescue!



Eigenfrequency Spectra
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*Two gaps 1n spectrum over range of aspect ratios
*Onset of first gap depends on aspect ratio
*Second gap closes at large aspect ratios



Rotational/Translational Character of Eigenmodes
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What i1s the difference between between a
dimer and an ellipse?

o= a/b
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Structural Properties
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