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Second order hyperbolic

equation.

Consider a hyperbolic equation of the
form:

Lu
def
=

∂2u(x, t)

∂t2

+

n
∑

j,k=1

1
√

g(x)

(

−i
∂

∂xj
+ Aj(x)

)

·
√

g(x)gjk(x)

(

−i
∂

∂xk
+ Ak(x)

)

u(x, t)

(1) − V (x, t)u(x, t) = 0

in Ω × (0, T0), where Ω is a bounded
domain in Rn, n ≥ 2, with smooth
boundary ∂Ω, all coefficients in (1) are
C∞(Ω) real-valued functions, ‖gjk(x)‖−1

is the metric tensor in Ω, g(x) = det ‖gjk‖−1.
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The Dirichlet-to-Neumann

operator.

We consider the initial-boundary value
problem:

(2) u(x, 0) = ut(x, 0) = 0 in Ω,

(3) u(x, t)
∣

∣

∣∂Ω×(0,T0)
= f (x, t).

Let Γ0 be an open subset of ∂Ω. We
shall consider f (x, t) such that
supp f ⊂ Γ0 × (0, T0).
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Then Dirichlet-to-Neumann (D-to-N)
operator:

(4) Λf
def
=

n
∑

j,k=1

gjk(x)

(

∂u

∂xj
+ iAj(x, t)u

)

·νk





n
∑

p,r=1

gpr(x)νpνr





−1
2
∣

∣

∣Γ0×(0,T0)
,

where u(x, t) is the solution of the initial-
boundary value problem (1), (2), (3),
ν = (ν1, ..., νn) is the unit exterior nor-
mal vector at x ∈ ∂Ω with respect to
the Euclidian metric. If F (x) = 0 is the
equation on ∂Ω on some neighborhood
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then

Λf
def
=

n
∑

j,k=1

gjk(x)

(

∂u

∂xj
+ iAj(x, t)u

)

·Fxk
(x)





n
∑

p,r=1

gpr(x)νpνr





−1
2
∣

∣

∣Γ0×(0,T0)

Note that domain Ω can be multi-connected
and Γ0 ⊂ ∂Ω can be not connected.
An important example of domain Ω is
the domain with obstacles when Ω =
Ω0 \ ∪

r
j=1Ωj where Ω1, ..., Ωr are non-

intersecting domains inside Ω0 that are
called obstacles, Γ0 = ∂Ω0 and the zero
Dirichlet boundary conditions are given
on ∂Ωj, 1 ≤ j ≤ r.

5



Gauge Equivalence.

Let G0(Ω) be a group of C∞(Ω) complex-
valued functions c(x) such that |c(x)| 6=
0, c(x) = 1 on Γ0. We say that poten-
tials
A(x) = (A1(x), ..., An(x)) and
A′(x) = (A′

1(x), ..., A′
n(x)) are gauge

equivalent if there exists c(x) ∈ G0(Ω)
such that

A′
j(x) = Aj(x) − ic−1(x)

∂c

∂xj
,

x ∈ Ω, 1 ≤ j ≤ n.

Note that if Lu = 0 and u′ = c(x)u
then L′u′ = 0 where L′ is an operator
of the form (1) with Aj(x), 1 ≤ j ≤ n,

replaced by A′
j(x), 1 ≤ j ≤ n. We

shall write for brevity

L′ = c ◦ L.
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Main Theorem.

Theorem 1.1. Let L(1)u(1) = 0 and
L(2)u(2) = 0 be hyperbolic equations
of the form (1) in domains Ω(1) and

Ω(2) respectively. Assume that Γ0 ⊂
∂Ω(1) ∩ ∂Ω(2) is nonempty and open.
Assume that the initial-boundary con-
dition (2), (3) are satisfied with Ω re-

placed by Ω(p), p = 1, 2.
Suppose Λ(1)f = Λ(2)f on Γ0×(0, T0)

for all smooth f (x, t) with supports in
Γ0 × (0, T0].

Suppose T0 > 2 sup
x∈Ω(p) dp(x, Γ0),

p = 1, 2, where dp(x, Γ0) is the dis-

tance in Ω(1) with respect to the met-

ric ‖g
jk
p (x)‖−1 in Ω(p) from x ∈ Ω(p)

to Γ0, p = 1, 2.
Then there exists a diffeomorphism
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ϕ of Ω(1) onto Ω(2), ϕ = I on Γ0, and

‖g
jk
2 ‖ = ϕ ◦ ‖g

jk
1 ‖.

Moreover, there exists a gauge trans-

formation c(x) ∈ G0(Ω
(1)) such that

c ◦ ϕ ◦ L(2) = L(1) in Ω(1).

This theorem was proven by the BC-
method (see M.Belishev, Inverse Prob-
lems, 1997, and Kachalov-Kurylev-Lassas,
2001). We give a new simpler proof of
this result with the emphasis on the case
of multi-connected domains with obsta-
cles. We also consider a generalization
on a case of the systems with Yang-Mills
potentials.
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More General Equations.

Consider a system of the form

∂2u(x, t)

∂t2
+

n
∑

j,k=1

1
√

g(x)

(

−i
∂

∂xj
Im + Aj(x)

)

·
√

g(x)gjk(x)

(

−i
∂

∂xk
Im + Ak(x)

)

u(x, t)

(5) + V (x)u(x, t) = 0,

where u(x, t), Aj(x), 0 ≤ j ≤ n, V (x)

are m×m matrices, Ω = Ω0\∪
m
j=1Ωj is

a domain with obstacles and the initial-
boundary conditions (2), (3) are satis-
fied. Let G0(Ω) be the gauge group of
nonsingular C∞ m×m matrices C(x)
in Ω such that C(x)

∣

∣

∂Ω0
= Im. Matri-

ces A(x) = (A1(x), ..., An(x)), V (x)
are called Yang-Mills potentials.

We say that (A(x), V (x)) and (A′(x), V ′(x))
9



are gauge equivalent if there exists C(x) ∈
G0(Ω) such that

A′(x) = C−1(x)A(x)C(x) − iC−1(x)
∂C(x)

∂x
,

(6) V ′(x) = C−1(x)V (x)C(x).

Theorem 1.2.Theorem 1.1 holds for
the equations of the form (5) with Yang-
Mills potentials.
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A particular case.

Consider the case when T0 = +∞,

gjk(x) = δjk. Making the Fourier trans-
form in t we get the Schrödinger equa-
tion with Yang-Mills potentials

(7)

n
∑

j=1

(

−i
∂

∂xj
Im + Aj(x)

)2

w(x)

+V (x)w(x) − k2w(x) = 0

When m = 1 we get the Schrödinger
equation with electromagnetic potentials.
The D-to-N operator for (7) has the form

Λ(k)h =
∂w

∂ν
+ i(A · ν)w

∣

∣

∂Ω0
,

where w
∣

∣

∂Ω0
= h. Knowing the hyper-

bolic D-to-N operator we can recover
Λ(k) for all k except a discrete set K
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and vice versa. Applying Theorem 2
we get that one can recover A(x) =
(A1(x), ..., An(x)), V (x) modulo gauge
transformation knowing Λ(k) for all k ∈
C \ K.
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Description of the gauge

equivalence classes and the

Aharonov-Bonm effect.

Let Ω = Ω0 \ (∪r
j=1Ωj) be a domain

with obstacles. Fix x0 ∈ ∂Ω0. Let P be
the space of all piecewise smooth paths
in Ω starting and ending at x0. Con-
sider an arbitrary path γ ∈ P . Let
x = γ(τ ) be a parametric equation of
γ, 0 ≤ τ ≤ τ0, and let C(τ, γ) be the
solution of the system

(8) i
∂C(τ, γ)

∂τ
=

dγ(τ )

dτ
· A(γ(τ ))C(τ, γ),

C(0, γ) = Im.

Denote by C(γ,A) ∈ GL(m,C) the
value of C(τ, γ) at τ = τ0. Here GL(m,C)
is the group of nonsingular m×m ma-
trices.
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Note that when m = 1 we have
C(γ,A) = exp(−i

∫

γ A · dx).

Wu and Yang (1975) called C(γ,A)
the gauge phase factor.

The image of the map γ → C(γ,A)
of the group of paths P to GL(m,C) is
called the holonomy group of the con-
nection

∑n
j=1 Aj(x)dxj.

It is easy to show that

C(γ,A(1)) = C(γ,A(2))

for all γ ∈ P if and only if A(1) and
A(2) are gauge equivalent in Ω.

As it was shown by Aharonov and B0hm
(1959) the presence of distinct gauge
equivalent classes of potentials can be
detected in an experiment and this phe-
nomenon is called Aharonov-Bohm ef-
fect.
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A geometric optic approach.

Consider the Schrödinger equation with
electromagnetic potentials

(9)

n
∑

j=1

(

−i
∂

∂xj
+ Aj(x)

)2

u(x)

+V (x)u(x) − k2u(x) = 0

in the domain Ω = Ω0 \ (∪n
j=1Ωj) with

obstacles. Assume that the D-to-N op-
erator Λ(k) is given for all k ∈ C \
K. My earlier approach to the inverse
problem for (9) was based on geometric
optics constructions and the reduction
to the integral geometry (tomography)
problem. Such approach yields weaker
results.
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We say that γ = γ1 ∪ γ2 ∪ ... ∪ γN

is a broken ray with legs γ1.γ2, ..., γN if
γk, 1 ≤ k ≤ N are geodesics, γ starts
at point x0 ∈ ∂Ω0, γ has N − 1 not
tangenial points of reflection at the ob-
stacles and γ ends at a point xN ∈ ∂Ω0.
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Consider two Schrödinger equations with
electro-magnetic potentials A(p)(x), V (p)(x), p =
1, 2, with the Euclidian metric gjk =
δjk in a plane domain with convex ob-
stacles.
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Using the geometric optics solutions
one can prove that if the D-to-N opera-
tors are equal then

(10) exp(i

∫

γ
A(1)(x) · dx)

= exp(i

∫

γ
A(2)(x) · dx),

(11)

∫

γ
V (1)(x)ds =

∫

γ
V (2)(x)ds

for any broken ray. Having (10), (11)
we can reduce the inverse problem for
the Schrödinger equation to the inverse
problem of the integral geometry of bro-
ken rays.

Some results in this direction were ob-
tained in [E] (2004) for n = 2 under
the geometrical restriction that there is
no trapped rays. This condition is not
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satisfied when one has more than one
smooth obstacle. However, there are
piecewise smooth obstacles that satisfy
these conditions. Despite that this ap-
proach is much more restrictive than the
hyperbolic equations approach it has an
advantage that it allows to prove the
stability results in some cases.

Consider the following example:
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An Example.

Let Ω1 be a convex obstacle in R2

and let f (x) be a smooth function in
R2\Ω, f (x) = 0 for |x| > R. It is well-
known (Helgason) that if

∫

γ f (x)ds = 0

for all lines γ not intersecting Ω then
f (x) = 0. But this problem is sev-
erly ill-posed. If one uses the broken
rays too, i.e. if one compute

∫

γ fds =

F (γ) for all broken rays γ then the in-
verse problem is well-posed and there is
a stability estimate (c.f. Mukhometov
(1977), in the case of no obstacles).
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