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The Liouville equationThe Liouville equation

where f(t,  x, where f(t,  x, vv) is the density distribution of a classical particle at ) is the density distribution of a classical particle at 

position position x, time t, and traveling with velocity x, time t, and traveling with velocity v.  v.  V(xV(x) is the potential) is the potential. . 
It describes the density distribution of a particle whose motionIt describes the density distribution of a particle whose motion is is 
governed by governed by NewtonNewton’’s Second Laws Second Law::

This is a Hamiltonian system with the This is a Hamiltonian system with the HamiltonianHamiltonian::
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General General LiouvilleLiouville equationequation

fftt + + ∇∇pp H H ·· ∇∇xx f f -- ∇∇xx H H ·· ∇∇pp f = 0f = 0
with H=with H=H(xH(x, p) is the Hamiltonian, p) is the Hamiltonian

The The bicharacterisitcsbicharacterisitcs::
ddxx/dt/dt = = ∇∇pp H             H             
ddpp/dt/dt = = --∇∇xx HH

SemiclassicalSemiclassical limit of limit of SchrodingerSchrodinger: H=1/2 |: H=1/2 |pp||22+V(+V(xx))
Geometrical optics:                         H = Geometrical optics:                         H = c(c(xx) |) |pp||

We will study both problemsWe will study both problems
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ApplicationsApplications

The The LiouvilleLiouville (or (or VlasovVlasov) equation arises in many ) equation arises in many 
physical applications in the  physical applications in the  microscopicmicroscopic mesoscopicmesoscopic or or 
kinetickinetic scale:scale:

E.g. Semiconductor, plasma, geometrical optics, wave E.g. Semiconductor, plasma, geometrical optics, wave 
propagation, etc.propagation, etc.

When coupled with an external field:   When coupled with an external field:   

E.g. E.g. VlasovVlasov--PoissionPoission, , VlasovVlasov--Maxwell, etc.Maxwell, etc.
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Another applicationAnother application

The Liouville equation also arises from the level set simulationThe Liouville equation also arises from the level set simulation of of 
““multivalued solutionsmultivalued solutions”” in high frequency wavesin high frequency waves

Geometrical opticsGeometrical optics
Semiclassical limit of linear Schrodinger equationSemiclassical limit of linear Schrodinger equation
High frequency limit of general symmetric hyperbolic systems: High frequency limit of general symmetric hyperbolic systems: 
waves, acoustic waves, elastic waves, electrowaves, acoustic waves, elastic waves, electro--magnetic wavesmagnetic waves
The The zero level setszero level sets of of anyany quasilinearquasilinear, multi, multi--D, first order scalar D, first order scalar 
PDEsPDEs (hyperbolic equations, Hamilton(hyperbolic equations, Hamilton--JacobiJacobi, etc) solves linear , etc) solves linear 
LiouvilleLiouville equationsequations

References:  References:  JinJin--OsherOsher, Cheng, Cheng--H.L. LiuH.L. Liu--OsherOsher, Jin, Jin--H.L.LiuH.L.Liu--OsherOsher--
TsaiTsai
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Discontinuous potentialDiscontinuous potential

The potential V(x) may be a given function, or from an The potential V(x) may be a given function, or from an 
external field external field 
electric field: Vlasovelectric field: Vlasov--Poisson equationsPoisson equations
electromagnetic field:  Vlasovelectromagnetic field:  Vlasov--Maxwell equationsMaxwell equations
We are interested in the numerical solution of the We are interested in the numerical solution of the 
Liouville equation when the potential V(x) is Liouville equation when the potential V(x) is 
discontinuous,  discontinuous,  corresponding to a corresponding to a potential barrierpotential barrier
Potential barriers arise in many physical applications: Potential barriers arise in many physical applications: 
quantum tunnel effect, semiconductor devise modeling, quantum tunnel effect, semiconductor devise modeling, 
plasmas, geometric optics, interfaces between different plasmas, geometric optics, interfaces between different 
materials, etc.materials, etc.
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Discontinuous local wave speedDiscontinuous local wave speed

We are also interested in the caseWe are also interested in the case
H(x,pH(x,p)=)=c(x)|pc(x)|p||
when when c(xc(x) is ) is discontinousdiscontinous, corresponding , corresponding 
to waves propagating through different to waves propagating through different 
materials materials 
high frequency or geometrical optics limit high frequency or geometrical optics limit 
of of 
uutttt--cc22(x)(x)∆∆ u=0u=0
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SnellSnell’’s Law of refractions Law of refraction

When a plane wave hits the interface,When a plane wave hits the interface,
the angles of incident and transmitted waves satisfy (n=1/c)the angles of incident and transmitted waves satisfy (n=1/c)
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Analytic issuesAnalytic issues

This is a linear hyperbolic PDE with This is a linear hyperbolic PDE with 
singular (singular (discontinousdiscontinous + measure valued) + measure valued) 
coefficients.coefficients.
weak solution? Uniqueness?weak solution? Uniqueness?

Study of geometrical optics limit with Study of geometrical optics limit with 
interface/boundary: Miller, Bal, Keller, interface/boundary: Miller, Bal, Keller, 
PapanicolaouPapanicolaou, , RyzhikRyzhik
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Numerical stability problemNumerical stability problem

When numerically solving the Liouville equation, which is a lineWhen numerically solving the Liouville equation, which is a linear ar 
hyperbolic equation,  by an explicit time discretization, the sthyperbolic equation,  by an explicit time discretization, the stability ability 
condition requirescondition requires::

since Vsince V’’(x)= (x)= ∞∞ at a discontinuity of V, one can smooth out V (at a discontinuity of V, one can smooth out V (OsherOsher, etc. ) , etc. ) 
then then Dv_iDv_i=O(1/=O(1/∆∆xx), thus), thus

+  poor numerical resolution+  poor numerical resolution∆ t=O(∆ x ∆ξ)
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Other numerical issuesOther numerical issues

Another issue is that the Another issue is that the Hamiltonian H is a constant Hamiltonian H is a constant 
across the particle trajectory,across the particle trajectory,

which  be which  be preserved numericallypreserved numerically

It is It is nevernever a good idea to take derivatives numerically a good idea to take derivatives numerically 
across the interface (across the interface (incorrect solutionincorrect solution!)!)

Which weak solution does the scheme converges to ?Which weak solution does the scheme converges to ?
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HamiltonianHamiltonian--preserving schemespreserving schemes

We  call a numerical scheme We  call a numerical scheme HamiltonianHamiltonian--preservingpreserving if itif it

Preserves constant Hamiltonian (exactly or with a desired Preserves constant Hamiltonian (exactly or with a desired 
numerical accuracy) along the particle trajectory across the numerical accuracy) along the particle trajectory across the 
potential barrier  potential barrier  
This provides a This provides a section criterionsection criterion ——which is physically which is physically relavantrelavant——
for the for the unique solutionunique solution of the underling hyperbolic of the underling hyperbolic PDEsPDEs

Allows hyperbolic time step Allows hyperbolic time step ∆∆t=O(t=O(∆∆ x, x, ∆∆ v)v) for explicit schemesfor explicit schemes
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new methodnew method

smoothing smoothing the potential the potential 
ignoring thignoring the discontinuitye discontinuity
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Shallow water equations with bottom Shallow water equations with bottom 
topographytopography

A A nonlienarnonlienar hyperbolic systems with source termhyperbolic systems with source term

hhtt + (+ (hu)hu)xx =0=0
((hu)hu)tt + (hu+ (hu22 + + ½½ ghgh22))xx = = --BB’’(x)gh(x)gh

The steady state solution satisfiesThe steady state solution satisfies

so the so the energy is a constantenergy is a constant, even if , even if B is B is 
dicontinuousdicontinuous

½ u2 + g(h+B) = C
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WellWell--balanced schemesbalanced schemes

How to preserve the steady state numerically?How to preserve the steady state numerically?

A standard shock A standard shock capturingingcapturinging scheme does not preserve the constant scheme does not preserve the constant 
energy, due to the use of energy, due to the use of numerical viscositynumerical viscosity, when, when
B(xB(x) is discontinuous ) is discontinuous 

WellWell--balanced schemebalanced scheme (balance the flux and source term): Roe, (balance the flux and source term): Roe, 
GreenbergGreenberg-- LeRouxLeRoux, , GosseGosse,  ,  PerthamePerthame--SemioniSemioni, , LeVequeLeVeque, Jin, etc., Jin, etc.

Our work is motivated by the wellOur work is motivated by the well--balanced balanced kinetic schemekinetic scheme of  of  PerthamePerthame--
SimeoniSimeoni for  the shallow water equations with bottom topographyfor  the shallow water equations with bottom topography

The HamiltonianThe Hamiltonian--preserving schemes are wellpreserving schemes are well--balanced schemes at the balanced schemes at the 
kinetickinetic levellevel
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Particle behavior at potential barrier in Particle behavior at potential barrier in 
classical mechanicsclassical mechanics

At a potential barrier, At a potential barrier, the Hamiltonian H remains a the Hamiltonian H remains a 
constant along particle trajectoryconstant along particle trajectory

½½ ((ξξ++))22 + V+ V++ = = ½½ ((ξξ--))22 + V+ V--

the density distribution f can be constructed along the density distribution f can be constructed along 
particle trajectory (upwind)particle trajectory (upwind)

f(xf(x--, , ξξ--) = ) = f(xf(x++, , ξξ++))
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Change of momentum at potential barrierChange of momentum at potential barrier
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Key idea in HamiltonianKey idea in Hamiltonian--preserving preserving 
schemesschemes

we build in the particle behavior at the potential barrier we build in the particle behavior at the potential barrier 
into the numerical fluxinto the numerical flux
consider a standard finite difference approximation consider a standard finite difference approximation 

ffI,j+1/2I,j+1/2, f, f--
i+1/2,ji+1/2,j -------- upwind discretizationupwind discretization

ff++
i+1/2, ji+1/2, j -------- incorporating the particle behaviorincorporating the particle behavior
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How to compute numerical flux in xHow to compute numerical flux in x--
direcion: direcion: 
Scheme IScheme I (finite difference formulation)(finite difference formulation)

If at xIf at xi+1/2i+1/2 V is continuous, then fV is continuous, then f++
i+1/2,ji+1/2,j= f= f--

i+1/2,j;i+1/2,j;
Otherwise, Otherwise, 
For For ξξjj>0, >0, 

If VIf V++
i+1/2i+1/2>V>V--

i+1/2i+1/2,   f,   f++
i+1/2,ji+1/2,j will be obtained from fwill be obtained from f--

i+1/2i+1/2((ξξ’’),     ),     
where where ξξ’’ is the  velocity obtained by is the  velocity obtained by 

1)  Hamiltonian conservation  (if the particle  1)  Hamiltonian conservation  (if the particle  
crosses over)crosses over)
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The reflection caseThe reflection case

2). if the particle was reflected:2). if the particle was reflected:

The other case can be dealt with similarly.The other case can be dealt with similarly.

One can also construct higher order scheme One can also construct higher order scheme 
by using higher order upwind shock capturing by using higher order upwind shock capturing 
schemes , combined  with higher order schemes , combined  with higher order 
interpolation to obtain flux at interpolation to obtain flux at ξξ’’
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The New CFL conditionThe New CFL condition

Note the discrete derivative of V is defined only Note the discrete derivative of V is defined only 
on on continuouscontinuous points of V, thuspoints of V, thus

∆ t=O(∆ x, ∆ ξ)
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Positivity and lPositivity and l∞∞--
contractioncontraction

for first order scheme (forward Euler in for first order scheme (forward Euler in 
time + upwind in space), under the time + upwind in space), under the 
““goodgood”” CFL conditionCFL condition

if fif fnn >0, then f>0, then fn+1n+1 > 0;> 0;
kk ffn+1n+1kkll∞∞ (x, (x, ξξ)) ·· kk ffnnkkll∞∞ (x, (x, ξξ))
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The lThe l11 stabilitystability (V step function)(V step function)

If  If  kk ff00kk11 and and kk ffnn kk∞ ∞ are both bounded, thenare both bounded, then
under the under the ““goodgood”” CFL condition, there exists a CFL condition, there exists a 
constant C >0 such thatconstant C >0 such that

kk ffnn
kk1     1     ·· CC kk ff00kk11

Main difficulty of the proofMain difficulty of the proof: : 
carefully estimate the flux at the carefully estimate the flux at the 
neighborhood of the barrierneighborhood of the barrier



20052005--99--2020 University of MarylandUniversity of Maryland 2424

More about the lMore about the l11 stabilitystability

For For singular initial datasingular initial data,  the above l^1 stability holds if,  the above l^1 stability holds if

Violation of this condition leads to Violation of this condition leads to instabilityinstability
(for semiclassical limit problem for example)(for semiclassical limit problem for example)
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Scheme IIScheme II: a finite volume : a finite volume 
approachapproach
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Numerical fluxNumerical flux
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Numerical integrationsNumerical integrations
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Stability of Scheme IIStability of Scheme II

If the forward Euler method is used in time, and first If the forward Euler method is used in time, and first 
order upwind is used in the flux, then order upwind is used in the flux, then under the same under the same 
CFL condition as Scheme ICFL condition as Scheme I,  Scheme II is,  Scheme II is

positivepositive
ll11 contractingcontracting ((for any bounded lfor any bounded l11 initial datainitial data))

ll∞∞ stablestable
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MultidimensionsMultidimensions

MultiMulti--d problems can be solved with the d problems can be solved with the 
same idea using same idea using dimensiondimension--byby--dimensiondimension

We are yet to develop methods to treat We are yet to develop methods to treat 
barriers barriers not alignednot aligned with grids, or with grids, or curved curved 
potential barrierpotential barrier
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An applicationAn application

One application of the Liouville equation is to compute the One application of the Liouville equation is to compute the 
geometrical opticsgeometrical optics
semiclassical limit of linear Schrodinger equationsemiclassical limit of linear Schrodinger equation

Physical observables includePhysical observables include
Position densityPosition density

velocityvelocity
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Shock vs. Shock vs. multivaluedmultivalued solutionsolution
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Linear superposition Linear superposition vsvs viscosity solutionviscosity solution
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QuasilinearQuasilinear hyperbolic equationshyperbolic equations
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The level set equationThe level set equation
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Multidimensional HamiltonMultidimensional Hamilton--JacobiJacobi
equationsequations
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Level set equation for HLevel set equation for H--JJ
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How to deal with measureHow to deal with measure--
valued solution?valued solution?

In physical space, the density and velocity may In physical space, the density and velocity may 
become become multivaluedmultivalued after the formation of after the formation of causticscaustics, , 
causing tremendous numerical difficulties.causing tremendous numerical difficulties.

Directly solving this measureDirectly solving this measure--valued solution (by valued solution (by 
approximating the initial delta function numerically)approximating the initial delta function numerically)
leads to poor numerical resolution. leads to poor numerical resolution. 

Scheme I is also unstable for such initial dataScheme I is also unstable for such initial data
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The level set methodThe level set method

By By Jin, H.L. Liu, S. Osher and R. TsaiJin, H.L. Liu, S. Osher and R. Tsai, , J. Comp. PhysJ. Comp. Phys. 05. 05

Decompose f into Decompose f into φφ and and ψψii (i=1, (i=1, LL d)d)
φφ and and ψψii both solve the same Liouville equation with initial databoth solve the same Liouville equation with initial data

then f =then f =
andand
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Level set for multivalued Level set for multivalued 
solutionssolutions

Note that Note that ψψii is the is the level set functionlevel set function to compute the multivalued to compute the multivalued 
solution of velocity usolution of velocity u

Jin and Osher,  Jin and Osher,  Comm. Math. SciComm. Math. Sci 20032003
Cheng, Liu and Osher, Cheng, Liu and Osher, Comm. Math. SciComm. Math. Sci 20032003

By using this decomposition By using this decomposition we compute the Liouville equation with we compute the Liouville equation with 
ll∞∞ data.data. The delta function is needed only at the The delta function is needed only at the post processingpost processing
step when we need to evaluate the moments step when we need to evaluate the moments ρρ and u !and u !
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Initial delta or notInitial delta or not
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Downstream discontinuityDownstream discontinuity

If V is discontinuous, the solution of If V is discontinuous, the solution of ψψ, , 
even with a continuous initial data, even with a continuous initial data, 
become become discontinuousdiscontinuous with the with the 
discontinuity in the downstream of the discontinuity in the downstream of the 
potential barrierpotential barrier

This will affect the numerical accuracyThis will affect the numerical accuracy
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Numerical accuracyNumerical accuracy

It is well known that the l^1 convergence of a discontinuous solIt is well known that the l^1 convergence of a discontinuous solution ution 
to linear hyperbolic equation is to linear hyperbolic equation is halfth orderhalfth order

Thus a scheme solving the Liouville equation  with a Thus a scheme solving the Liouville equation  with a discontinousdiscontinous V V 
has only has only halfthhalfth--orderorder l^1 convergence. l^1 convergence. 

Evaluating the moments through a Evaluating the moments through a singulersinguler kernel also introduces kernel also introduces 
a a halfthhalfth orderorder errorerror

Thus the error for bothThus the error for both ff and the and the momentsmoments are are halfthhalfth orderorder..
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Example 1Example 1



20052005--99--2020 University of MarylandUniversity of Maryland 4444

Initial data (nonInitial data (non--zero part)zero part)
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comparisoncomparison

Exact solution                           Exact solution                           solutionsolution by Scheme Iby Scheme I
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LL11 errorerror
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Example 2 (Example 2 (semiclassicalsemiclassical limit problem)limit problem)



20052005--99--2020 University of MarylandUniversity of Maryland 4848

Solution by 800 x 640 meshSolution by 800 x 640 mesh

Averaged Velocity                 densityAveraged Velocity                 density
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L^1 error for densityL^1 error for density
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Example 2: a 2D Example 2: a 2D semiclassicalsemiclassical limit limit 
problemproblem
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Exact density at t=0.4Exact density at t=0.4
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Numerical density by Numerical density by 
Scheme IScheme I

262644 mesh                                         50mesh                                         5044 meshmesh
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ll11 errorerror
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High frequency waves with discontinuous High frequency waves with discontinuous 
wave speedwave speed

The high frequency (geometrical optics) limit of wave The high frequency (geometrical optics) limit of wave 
equationsequations

uutttt –– cc22((xx) ) ∆∆u = 0u = 0
is the is the LiouvilleLiouville equation with equation with H=H=c(c(xx)|)|pp||

fftt + + c(xc(x) ) p/|pp/|p| | ·· ∇∇xxff+ |p| + |p| ∇∇c(xc(x) ) ·· ∇∇ppff= 0= 0
We have also constructed similar We have also constructed similar HamiltoianHamiltoian--
Preserving schemes for Preserving schemes for c(c(xx) discontinuous) discontinuous
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HamiltonianHamiltonian--preserving=Snellpreserving=Snell’’s Laws Law

We can show that the Hamiltonian We can show that the Hamiltonian 
preservation is equivalent to Snellpreservation is equivalent to Snell’’s laws law
for a plane wave hits a flat interface.for a plane wave hits a flat interface.
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Transmission and reflectionTransmission and reflection

We can extend our algorithm to the case We can extend our algorithm to the case 
when both transmission and reflection coexist when both transmission and reflection coexist 

f(xf(x,,ξξ)= )= ααTT f(xf(x--, , ξξ--)+)+ααRR f(xf(x++, , ξξ++))
ααRR:  reflection rate:  reflection rate
ααTT:  transmission rate:  transmission rate

ααRR++ααTT=1=1
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New numerical difficultyNew numerical difficulty

The The decomposiondecomposion idea of Jinidea of Jin--LiuLiu--OsherOsher--
Tsai does not apply here, and one has to Tsai does not apply here, and one has to 
use the delta initial data numericallyuse the delta initial data numerically

Since the solution to the Since the solution to the ODEsODEs
((bicharacteristicsbicharacteristics) bifurcates at interface ) bifurcates at interface 

with given probability to transmit or being with given probability to transmit or being 
reflectedreflected
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Stability resultsStability results

We obtained similar stability results for We obtained similar stability results for 
the scheme for the wave equations, even the scheme for the wave equations, even 
when both transmission and reflection when both transmission and reflection 
coexistcoexist
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Other possible applicationsOther possible applications

When there is an external fieldWhen there is an external field::
acoustic waves, elastic waves,acoustic waves, elastic waves,
VlasovVlasov--Poission,  VlasovPoission,  Vlasov--Maxwell, etc.Maxwell, etc.

The principle of HamiltonianThe principle of Hamiltonian--preserving preserving 
can certainly be used in these systemscan certainly be used in these systems
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Other ongoing projectsOther ongoing projects

A MonteA Monte--Carlo particle method for Hamiltonian systems with Carlo particle method for Hamiltonian systems with 
discontinuous Hamiltonians (with F. discontinuous Hamiltonians (with F. BaiBai and L. Wu)and L. Wu)

Quantum Quantum LiouvilleLiouville equation (with K. Novak):equation (with K. Novak):
we aim at developing we aim at developing ““semiclassicalsemiclassical LiouvilleLiouville approach to quantum approach to quantum 
potential barrierpotential barrier””

Elastic wave (with X. Elastic wave (with X. LiaoLiao))

When the interface is not aligned with the grids, or curved When the interface is not aligned with the grids, or curved 
interface, etc.interface, etc.

Diffraction:Diffraction: incorporate GTD into the numerical fluxincorporate GTD into the numerical flux……
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