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fi+v -V f -V, V.-V, f=0, t=0, x,vg R

where f(t, X, V) Is the density distribution of a classical particle at

position x, time t, and traveling with velocity v. V(X) Is the potential.

It describes the density distribution of a particle whose motion Is
governed by Newton’s Second Law:

This is a Hamiltonian system with the Hamiltonian:
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General Liouville equation

Fe Ny H OV Vo H V2D
with H=H(x, p) Is the Hamiltonian

The bicharacterisitcs:
dx/dt = Vp H
dp/dt=-V, H

Semiclassical limit of Schrodinger: H=1/2 |p|?+V(x)
Geometrical optics: H = c(x) |p|

We will study both problems
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Applications

= The Liouville (or Vlasov) eguation arises in many
physical applications in the microscopic Mesoscopic or
Kinetic scale:

E.g. Semiconductor, plasma, geometrical optics, wave
propagation, etc.

= When coupled with an external field:

E.g. Vlasov-Poission, Vlasov-Maxwell, etc.
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The Liouville eguation also arises from the level set simulation of
“multivalued solutions” in high frequency waves

= Geometrical optics
=  Semiclassical limit of linear Schrodinger eguation

= High frequency limit of general symmetric hyperbolic systems:
Wwaves, acoustic waves, elastic waves, electro-magnetic waves

4 Tre of any guasilinear, multi-D, first order scalar
PDEs (hyperbolic equations, Hamilton-Jacobi, etc) selves linear
Liouville equations

= References: Jin-Osher, Cheng-H.L. Liu-Osher, Jin-H.L.Liu-Osher-
Tsal
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= The potential V(x) may be a given function, or from an
external field

electric field: Vlasov-Poisson eguations
electromagnetic field: Viasov-Maxwell equations

= We are interested in the numerical solution of the
Liouville eguation when the potential V(X) Is
discontinuous, corresponding to a gaieriilzll gzirriey

= Potential barriers arise inimany physical applications:
guantum tunnel effect, semiconductor devise modeling,
plasmas, geometric optics, interfaces between different
materials, etc.
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Discontinuous local wave speed

= \We are also interested In the case

H(x,p)=c(x)[p|

when c(X) IS , corresponding
[0 waves propagating threugh different
matenals

= Qigh frequency or geometrical optics limit
of

u,-c%(x)A u=0
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Snell’'s Law of refraction

= When a plane wave hits the interface,
the angles of incident and transmitted waves satisfy (n=1/c)

n; sin 8; = N, sin 0
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Analytic Issues

= This Is a linear hyperbolic PDE with
Singular (discontinous + measure valued)
coefficients.

weak solution? Unigueness?

= Study of geometrical optics limit with
Interface/boundary: Miller, Bal, Keller,
Papanicolaou, Ryzhik
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When numerically solving the Liouville equation, which is a linear
hyperbolic equation, by an explicit time discretization, the stability.
condition requires:

max; |£;| max; |DV,

At | ———— ————| <1

Az A¢ -

since V'(xX)= oo at a discontinuity of V, one can smooth out V (Osher, etc. )
then ), thus

+ poor numerical resolution
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Other numerical I1Issues

Another issue Is that the Hamiltonian H Is a constant
across the particle trajectory,

which be preserved numerically

S a good Idea to take derivatives numerically
across the interface ( )

Which weak solution does the scheme converges to ?
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We call a numerical scheme Hamiltenian-preserving If it

= Preserves constant Hamiltonian (exactly or with a desired
numerical accuracy) along the particle trajectory acress the
potential barrier

This provides a —which Is physically relavant—
for the of the underling hyperhbolic PDES
= Allows hyperbolic time step for explicit schemes
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new method

L M
os 1 15

Figure 1 density p(z,#) at t = 1. Solid line: the exact sclution; 'o”: the numerical
solution by standard method on 100 x 80 mesh with At = {AZ,

smoothing the potential

ignoring the discontinuit
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Shallow water equations with bottom
topography

A nonlienar hyperbolic systems with source term

h, + (hu), =0
(hu), + (hu? + % gh?), = -B'(x)gh

TThe steady state solution satisfies

SO the , even if B Is
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Well-balanced schemes

How to presernve the steady state numerically?

= A standard shock capturinging scheme does not preserve the constant
energy, due to the use of numerical viscosity, when

B(X) Is discontinuous

= Wellgzlarcad scnigge (balance the flux and source term): Roe,
Greenberg- LeRoux, Gosse, Perthame-Semioni, LeVeque, Jin, etc.

= QOur work is motivated by the well-balanced of Perthame-
Simeoni for the shallow water equations with bottom topography

= The Hamiltonian-preserving schemes are well-balanced schemes at the
rinatic
“irigtic level
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Particle behavior at potential barrier In
classical mechanics

= At a potential barrier, the Hamiltonian H remains a
constant aleng particle trajectory.

L EV IV =) Y

= the density distribution f can be constructed along
particle trajectory (Upwind)

iy, =N - Ay ) =
X1, 6 = 1T, )
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Change of momentum at potential barrier

[E2—2(v* — v:}]wz
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Key idea in Hamiltonian-preserving
schemes

= We build ini the particle behavior at the potential barrier
Into the numerical flux

consider a standard finite difference approximation

fiis120 Tieap; - upwind discretization

+
i j
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How to compute numerical flux in x-
direcion:
Scheme | (finite difference formulation)

= It at x4, V Is continuous, then %, = 1,15
= Otherwise,
For >0,
If V*i10>Voiiins  Fiap; Will be obtained from f, (&),
where &’ Is the velocity obtained by,
1) Hamiltonian conservation (ifithe particle
CroSSes oVver)

if & <& < .41 for some k

en f+. = &n=Ce | &b ¢
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2). If the particle was reflected:

f—i_ 1, = ‘.fi:'+l_.|i=; where EF. = _ij

Lt i_'_ .l'

The other case can be dealt with similarly.

One can alsoe construct higher order scheme

by using higher order upwind shock capturing
schemes , combined with higher order
Interpolation to obtain flux at &’
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= Note the discrete derivative of V Is defined only
on continuous points of V, thus

2005-9-20 University of Maryland 21




= for first order scheme (forward Euler in
time + upwind in space), under the
“‘good” CFL condition

if f" >0, then 1 > O;
H fn+1”|<><> (X, 2) E H anIOO (%, 2)
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+ If || )|, and || f ||, are both bounded, then

under the “good” CFL condition, there exists a
constant C >0 such that

| . <Cl Pl

Main difficulty of the proof:
carefully estimate the flux at the
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More about the |I* stability

For singular initial data, the above I*1 stability holds if

Assumption 1

There exists a positive constant £, such that

V(i,7) € S. = {(E,J)| @i < zpys,

it holds that _ i
|fi;] < Cilf°h.

Violation of this condition leads to irisiziolliiy
(for semiclassical limit problem for example)
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Scheme Il: a finite volume
approach

By integrating the Liouville equation (2.1) over the cell [x; 1o, 241 0] < [§51 /2, &1 2],
one gets the following equation

(4.1)

i

! 4 .
The upwind discretization depends on the sign of £; and % To illustrate

_vt

the basic idea, we assume &; > 0, 1—+i’—i’- < 0 and V.© ’L”;_::l (this is the case
2 2

when the particle loses momentum from left to right at the barrier). In this case

figs = fj_\gf”"‘ e (a7s.6.7) de,

Tiivt = V’_—l—v_ﬂfx V:’ff( ik )d’"

it = i—=

z = i—%

where T 1, <§__+ , are the limit from the negative coordinate in the r-and &-direction,
2 2
taking into account that f(wx, £, 7) may be discontinuous at the grid point x = x;, 1

a11d§:§j+% .
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Numerical flux

By using the condition (2.5):

S+d n S4d —
s~ g fg ef (e 60) deo= o fg F (w0

where f is defined as

F(emp &) ( oye+2(vz,

Using change of variable on (4.2) leads to

o ]: o ($5+%’ Jera (v

e Vo ) )
gja.gf e 3 £f (25,56:1) €.

+3  i+3
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Numerical integrations

The integral in (43) will be approximated by a quadrature rule. Since the end

(1-".*1 -1, ) i (43) may not he a grid potut in the &-direction,
] _|_: | \ / v &

15

Special care needs to be taken af the both ends of the inferval
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Stability of Scheme II

If the forward Euler method Is used in time, and first
order upwind Is used in the flux, then under the same
CFL condition as Scheme |, Scheme Il Is

= positive
= | contracting (for any bounded I® initial data)
= [ siable
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Multidimensions

= Multi-d problems can be solved with the
same Idea using dimension-by-dimension

= \WWe are yet to develop methods to treat
barriers not aligned with grids, or curved
potential barrier
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An application

One application of the Liouville equation is to compute the
= geometrical optics
= semiclassical limit of linear Schrodinger eguation

Je+ v Vi f = ViV - Vif =0,

Y
#

f(x,v,0) = po(x)0(v — up(x))

Physical observables include

Position density. p(x,t) = /t_f(x?v_,ﬁ)dvj
velocity u(x,t) = ———: /f(XJﬁI‘-)WlV
0 pxt) | "
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Shock vs. multivalued solution
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Linear superposition vs viscosity solution

(a) Correct solution (b} Eikonal equation
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Quasilinear hyperbolic eguations

BEBased on a mathematical formulation in Cowrant-
Hilbert.

Ve consider Let w(f.x) € IR be a scalar satisfving
an initial value problem of an d-dimensional first
order hvperbolic PDE with source term:

1) A +— F () - Vxu + g(x) = O,

=2 w(0,x) = uo(x) .

Here F(uw) : R?Y — N9 js a vector, and g : B9 — R is
the source term. VWWwe introduce a level set function
H{E.x,.p)y in dimension 4+ 1, whose zero level set
is the solution ww:

(3) H(t.x,p)y — O at p— u{f.x).

T herefore we evolve the entire solution «w as the
zero level set of .
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The level set equation

One can easily show that the level set function sat-
isfies a simple linear hyperbolic equation iIn RA+1.

(4) Ot + F(p) - Vx¢ — q(x) Ipp = 0.

The initial condition for ¢ can be chosen simply as

(5) $(0.x.p) = p — uo(X).

iIf ug(x) is ocntinuous, or as the signed distance
function if ug(x) is discontinuous (so ¢ is always
continuous).
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Multidimensional Hamilton-Jdacobi

eguations

Consider the time dependent, d-dimensional Hamilton-
Jacobi equation

(6) XS + H(xX.VxS) =0.

(7) S(0,x) = So(x).

Introduce u = (uq.---.ug) = VxS. Taking the
gradient on the H-J equation, one gets an equiv-

alent (at least for smooth solutions) form of the
Hamilton-Jacobi equation

(8) o+ VxH(x.u) =0,
(9) u(0.x) = ug(x) = VxSo(x).
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Level set equation for H-J

We use d level set functions ¢; = ¢;(t.x.p). i =

1,---,d, where p = (p1.---.pg) € Rd such that
the |nter5ect|c:rn of their zero level sets vields u,
Nnamely,

di(t.x,p) =0 at p =u(t.x).

(13)

Then one can show that ¢; satisfies

(14) l:__}t:’;:};' —l— vl}H * vxtﬁl — "F;{H * vl}:’f:}' — D .

It is the Liouville equation, which is linear hy-
perbolic with wvariable coefficients since in (?7)
H = H(x.p).

2005-9-20 University of Maryland




How to deal with measure-
valued solution?

In physical space, the density and velocity may
become multivalued after the formation of caustics,
causing tremendous numerical difficulties.

Directly solving this measure-valued solution (by.
approximating the nitial delta function numerically)

leads to poor numerical resolution.
SeHEme Iis alse Unstals e oy stech Inlvai cate
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The level set method

By Jin, H.L. Liu, S. Osher and R. Tsai, J. Comp. Phys. 05

DECONIPLSENNNON)IIERYN{=HNEEENG)

¢ and v; both solve the same Liouville equation with initial data

d(x,v,0) = po(x), ©i(x,v,0) = v; — up(x)

then f = B SRaalIRIC
and

p(x,t) = / O(x, v, )1 5(1;)dv,

u(x,t) = / d(x, v, )VIIL 6(1;)dv / p(x, t)
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| evel set for multivalued
solutions

Note that yj; Is the level set function to compute the multivalued
solution of velocity u

Jin and Osher, Comm. Math. Sci 2003
Cheng, Liu and Osher, Comm. Math. Sci 2003

By using this decomposition
The delta function Is needed only at the post precessing
step when we need to evaluate the moments p and u'!
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Initial delta or not

6
5|
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!
5|
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o
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Downstream discontinuity

= |f \/ Is discontinuous, the solution of v,

even with a continuous Initial data,
become discontinuous with the
discontinuity in the dewnstream of the
potentiall barrier

This will affect the numerical accuracy.
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Numerical accuracy

It is well known that the 1”1 convergence of a discontinuous solution
to linear hyperbolic equation is halfth order

Thus a scheme solving the Liouville equation with a discontinous V
has only halfth-erder 1?1 convergence.

Evaluating the moments through a singuler kernel also introduces
a error

Thus the error for both and the are
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Example 1
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Initial data (non-zero part)

1.5 —1 —-0.5 8] 0.5 1

Figure 9.1 Example 9.1, the non-zero part of the initial data f(x,£,0) in (9.2).
The horizontal axis is position, the vertical axis is velocity.
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comparison

Exact solution solution by Scheme |
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Table 1 Example 9.1, ! error of numerical solutions on different meshes

mesh 50 x 51 100 x 101 200 201

Scheme [ 0.245192  0.155871  0.003817

Scheme [1 0.246248 0156963  0.094275

2005-9-20 University of Maryland



Example 2 (semiclassical limit problem)

-1
-2 -1.5 -1 15 0 05 1 15

igure 9.4 Example 9.2, velocity profile w(z). Dashed line: initial velocity profile;
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Solution by 800 x 640 mesh

Averaged Velocity density

e at t = 1.8, Solid line: exact
g a 800 x 641 cell.
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L1 error for density

Table 3 1" error of the numerical averaged velocity p on different meshes

mesh 200 x 161 400 x 321 800x 641

Scheme [ 0.170247  0.116522 0073458

Scheme 1T 0.170900 0128646  0.081642
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Example 2: a 2D semiclassical limit
problem

ff_|_‘-_-.f1-|"-rfu I f u‘u

o 0.1, r >0,y >0,
Viz,y) =4 .

0, else

f(z,y,8,m,0) = p(z,y,0)6(§ — p(z,y))d(n — q(z,y)),

p(z,y,0)

p(z,y) = q(z,y)
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Exact density at t=0.4
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Numerical density by
Scheme |

- 264 mesh 504 mesh
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Table 4 [! error of numerical densities
on [0,0.2] x [0,0.2] using different meshes

mesh 144 264 504
Scheme I 0.01851 0.01417 0.01029

Scheme II  0.01864 0.01527 0.01257
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High freqguency waves with discontinuous
wave speed

The high frequency (geometrical optics) limit of wave
eqguations

U; — c%(X) Au=0
IS the Liouville equation with H=c(x)|p]

fo+c(x) p/lp| -V, + |p| Ve(x) - V =0

We have also constructed similar Hamiltoian-
Preserving schemes for c(x) discontinuous
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Hamiltonian-preserving=Snell's Law

= \We can show that the Hamiltonian
preservation Is equivalent to Snell’s law

for a plane wave hits a flat interface.
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Transmission and reflection

We can extend our algorithm to the case
when both transmission and reflection coexist

T(X,6)= o 1(X, &)Fag T(X", C7)
o: reflection rate
o: transmission rate

ortor=1
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New numerical difficulty

The decomposion idea of Jin-Liu-Osher-
Tsal does not apply here, and one has to
use the delta initial data numerically,

Since the solution to the ODES
(bicharacteristics) bifurcates at interface

with given probabllity to transmit or being
reflected
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Stability results

= \We obtained similar stability results for
the scheme for the wave eguations, even
when both transmission and reflection
coexist
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Other possible applications

acoustic waves, elastic waves,
VlIasov-Poission, Vlasov-Maxwell, etc.

The principle of Hamiltenian-preserving
can certainly be used in these systems
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Other ongoing projects

A Viente-Carle particlermetaod for Hamiltenian: systems with
discontinueus’ Hamiltenians (wWith . Bairand L. W)

Quantum: Lieuvillerequatien (Withr ks Novak):

Weralm at developing|“semiclassical Iliouvillerapproach to guantum
potental varner

= Elasticiwave (Withx. LLiae)

= \When the interface IS not alignead withithe grids; or curved
Interface, etc.

= Diffliaction: Incerpoeraie GillD inte the numerncal ...
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