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Numerical methods

e Direct methods
— Wave equation (time domain)

— Integral equation methods (frequency domain)
e Asymptotic methods
— Physical optics

— Geometrical optics

— (Gaussian beams)

e Hybrid methods




Direct numerical methods for the wave equation

Scalar wave equation

uyy — c(x)?Au = 0, (t,z) € RT x Q, Q C R¢

+ boundary and initial data.
e Discretize (), time and w.

e Many methods: FD (explicit, uniform staggered grids), FV,
FEM (implicit or DG).

e Complexity O(w/PHD(d+1)) (including time).

e Issues: First/second order system. Treatment of

boundaries/interfaces. Phase errors.




Direct integral equation methods for Helmholtz

Scattering problem for Helmholtz equation: u = ug + Ujne, ¢ = 1
Aug + w?us = 0, r e R\ Q,
Us = —Uinc, xr € 0f) + radiation condition

Rewrite as integral equation, e.g.

Uinc(x> = — G(w‘x_a},bau(gg’)

dz’, vV € 0f).
5Ie) 877,

Discretize 0f) and g—z;i =  O(w? 1) unknowns.

Finite element /collocation methods, "method of moments”.
Full matrix equation, direct solution, complexity O(w3(@=1).
Fast multipole methods, iterative solver, complexity ~ O(w<d_1)).

Issues: 15¢/2%¢ kind Fredholm equations. Conditioning. Corners.




Physical optics

Integral formulation of scattering problem

/
j{ G(w\x—x’\)au(a})dx', r e R\ Q,
1o on

Approximate g—g by geometrical optics solution.

E.g. if ujne = exp(iwa - @) is a plane wave, €} convex, then

O(Uine + uS®) 2iwa - n(x)e™*®, gz illuminated,

on 0, ax in shadow.

Cost of computing solution still depends on w.

"Exact PO”
ou

A — A(m’w)eiwa-w/w

on

then A(x,w) smooth, uniformly in w, except at shadow boundaries.

Discretize and solve A(x,w) at cost independent of w. [Bruno]




Geometrical optics models and numerical methods

uy — c(x)*Au =0

Y

Kinetic Eikonal
fi+Ep-Vaf b1+ c|Vo| =0

Ray tracing Wavefront Moment methods, Hamilton—Jacobi

methods Full phase space methods
methods




Eikonal equation

e Time-dependent version.

Wave equation plus ansatz u(t, z) ~ A(t, z)e™?*%) give

¢+ c(z)[Vo| = 0.

Upwind, high-resolution (ENO, WENO) finite difference
methods [Osher, Shu, et al]

Stationary version.

Helmholtz equation plus ansatz u(z) ~ A(z)e’¥®) give

V| = c(z) .

Fast marching [Sethian| or fast sweeping methods [Zhao, Tsai,
et al].

(Note, if IC and BC match, ¢ = ¢ —t.)




Eikonal equation

Ansatz only treats one wave. In general crossing waves

u(:z:) ~ Al(a}>eiw901($) +A2<x)eiwg02(a:) + o

Nonlinear equation, no superposition principle
Viscosity solution, kinks

First arrival property: @yisc(x) = min, o, ()







Geometrical optics models and numerical methods

uy — c(x)*Au =0

Y
Kinetic

Je + CQP -V f

Ray tracing Wavefront Moment methods,

methods  Full phase space
methods

Eikonal
¢t + c[Veo| =0

Hamilton—Jacobi
methods




Ray tracing

Rays are the (bi)characteristics (x(t),p(t)) of the eikonal equation,
given by ODEs

dx

dr d_p B Ve(x)
dt

dt  c(x)’

c(x)°p.

Hamiltonian system with H = ¢(x)|p| and H = 1.
Solve with numerical ODE methods, e.g. Runge Kutta.
Note, if valid at ¢ = 0, then for all ¢ > 0:
o p(x(t)) =t, (phase ~ traveltime)
o Vo(x(t)) = p(t), (local ray direction)
e |p(t)] =1/c(x(t)), (H =1 conserved, can reduce to p € S~ 1)

There are also ODEs for the amplitude along rays.

Issues: Diverging rays. Interpolation onto regular grid.




Example: Ray/Wavefront solutions




Ray tracing boundary value problem
Start and endpoint of ray given.

- Piecewise constant c(x)

Rays piecewise straight lines. Find refraction/reflection points
at interfaces by Newton’s method.

- Smoothly varying c(x)

Ray tracing eq is a nonlinear elliptic boundary value problem

o)

x(0) = xy,

x(t") =ax;.

t* additional unknown.

Solve by shooting method or discretize PDE 4+ Newton.
Multiple solutions difficult.




Wavefront tracking

Directly solve for wavefront given by ¢(z) = const.

Suppose y(«) is the initial wavefront, p(v(a)) = 0.
Follow ensemble of rays

o =, 2(0,) = ¥(a),

op(t,o) Ve

_ 3 — 7' ()
o = o PO.9) = )l

Note: Moving front in normal direction a possibility

1
L,
Ty = C (since 0 = Oqp(x(t,0)) = xo - Vo = x4 - D)

1z, |

But not good since wavefront non-smooth!




Phase space

Phase space (x, p), where p € S9! is local ray direction

Observation: Wavefront is a smooth curve in phase space.
e 2D problems: 1D curve in 3D phase space (x,y, ).
e 3D problems: 2D surface in 5D phase space (z, v, z, 0, ).

0 0 0
A A A




Wavefront construction

Propagate Lagrangian markers on the wavefront in phase space.

Insert new markers adaptively by interpolation when front

resolution deteriorates.

Interpolate traveltime/phase/amplitude onto regular grid.
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Geometrical optics models and numerical methods

uy — c(x)*Au =0

Y
Kinetic

Je + CQP -V f

Ray tracing Wavefront Moment methods,

methods Full phase space
methods

Eikonal
¢t + c[Veo| =0

Hamilton—Jacobi
methods




Kinetic formulation

Let f(t,x,p) be the particle (photon) density in phase space.
Bicharacteristic equations =

Ve
ft—|—62p-me—7-fo:(),

f supported on |p| = c(x)™!, (H = 1).

Can also be derived directly from wave eq. through e.g. Wigner
measures |Tartar, Lions, Paul, Gerard, Mauser, Markowich,

Poupaud, ... ]

Relationship to wave equation solution:

u=Aew? ~ f=A%(p—-Vo).

Note: Loss of phase information.




Moment equations

e Derived from transport equation in phase space + closure
assumption for a system of equations representing the
moments. (C.f. hydrodynamic limit from Boltzmann eq.)

e PDE description in the “small” (¢, x)-space.

e Arbitrary good superposition. N crossing waves allowed. (But

larger N means a larger system of PDEs must be solved.)

[Brenier, Corrias, Engquist, OR] (wave equation),
[Gosse, Jin, Li, Markowich, Sparber] (Schrodinger)




Derivations, homogenous case (¢ = 1)

Starting point is
ft +p- vch = 0.

Let p = (p1,p2). Define the moments,

Uz Z/ Pip‘%fdp-
R2

/ piph(fe +p-Vauf)dp =0,
R2

we get the infinite (valid V7,7 > 0) system of moment equations

(mij>t + (mi—l—l,j)x + (m¢7j+1>y = 0.




Derivations, homogenous case, cont.

Make the closure assumption
(@, p,t ZA2 (Ipl — 1,argp — Oy).

The moments take the form

N
— E Az cos' 0. sin’ 0.

Corresponds to a maximum of N waves at each point.
Choose equations for moments mag_10 and mgak—1, k =1,..., N.

Gives closed system of 2N equations with 2N unknowns (the Aj’s
and 0}’s).




Moment equations, examples

2
Uuq UqUQ

(V5] 4 \u24u2 1 v u?4u? —0

2
UL U Uy
U

¢ Vuitui ) Vuit+us ”
where u; = mqg = A? cosf and us = mgy = A?sin 6.

For N > 2,

FO(U)t —|— Fl(u)x —|— FQ(’LL)y p— O

where Fg(u), F1(u) and F5(u) are complicated non-linear

functions.

e PDE = weakly hyperbolic system of conservation laws, (with

source terms when ¢ varies)

e [lux functions in conservation law can be difficult to evaluate.




Wedge example
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Hybrid methods

e Full Helmholtz or wave equa-
tion where variations in ¢(x) and/or
geometry on same scale as wave-
length.

e GO elsewhere, typically for long

range interactions.

Ex. antenna 4+ aircraft.

Coupling of models.
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Other methods

Hamilton—Jacobi methods

[Vidale, van Trier, Symes, Engquist, Fatemi, Osher, Benamou,. .. |

Wavefront tracking using level sets in phase space
[Osher, Tsai, Cheng, Liu, Jin, Qian, ...]

Wavefront tracking using segment projection
[Engquist, OR, Tornberg]

Full phase space methods
[Sethian, Fomel, Symes, Qian]




