Remarks on the blow-up
criterion of the 3D
iIncompressible Euler

equations

Dongho Chae

Sungkyunkwan University
Korea



1. Introduction

e \We are concerned on the Euler equations for
the homogeneous incompressible fluid flows in
R3 x (0, 00).

ov

(E) 815 + (v-V)v = —-Vp

div v = 0,

where v = (vl v2,03), vJ = vi(x,t), j =1,2,3
is the velocity of the fluid flows, p = p(x,t) is
the scalar pressure.

e Taking curl of the momentum equation we
obtain the vorticity formulation.

Ow

ot
div v=0, curlv=w------ (*)

+ (v-V)w =w- Vv



e The elliptic system (*) can be solved to give
the Biot-Savart law

1 — t
oz t) = & (z —y) X w(y, )dy.
47 JR3 lz — y|3

e Construction of local solutions in many func-
tion spaces:

¢ Kato, Ebib-Marsden, Bourguignon-Brezis,
Temam(H™, HS, Wk bounded or whole of R3,

or on Riemannian manifold), Kato-Ponce(L*%P),
Lichtenstein, Chemin(C¥), M. Vishik, C. (B;’;,q,Fg,q),

e Outstanding open question:
Finite time blow-up or not of the local solu-
tions 7

e Beale-Kato-Majda(BKM) criterion:

T
lim sup [[o(8)|| g = oo <= / lw ()| foods = oo
t /T, 0
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e Refinements using the ‘slightly weaker’ spaces
than L°° for vorticity:

o Kozono-Taniuchi(BMO), C. (FY, ), C., Kozono-
Ogawa-Taniuchi(BY, ,,)

e In this talk we are concerned on reducing
number of components of the vorticity to con-
trol blow-up for flows with or without axisym-
metry.




Definition of function space BY ;.

Given f € S its Fourier transform f is defined
by

— F — 1 —1x-&
FH =10 =557 [ ie @) da

We consider ¢ € § satisfying

(i) Supp@ C {€ e R" |3 < [¢] < 2},

(i) (&) >C>0if 5 <€ <3,

(i) Y,ez3j(€) =1, where ¢; = 3(277¢).

Note that ¢; is supported on the annulus of
radius about 2.



e Then, BY , is defined by

feBx1 = lfllgo =3 lej*fllree < oo,
> JjEZ
where x is the standard notation for convolu-
tion, (fxg)(x) = Jgn f(z —y)g(y)dy.

e Note that (iii)(partition of unity) above im-
plies immediately that BY ; — L.

e In fact Bgo 1 Can be regarded as ‘slightly’ reg-
ular function class than L°°, where the Calderon-
Zygmund SIO operates well.



2. Main results

(i)Case without any symmetry:

Theorem 1 Let m > 5/2.

Suppose v € C([0,Ty); H™(R3)) is the local
classical solution of (E) for some Ty > 0, cor-
responding to the initial data vg € Hm(IR{?’),
and w = curl v is its vorticity. We decompose
w = w + w3e3, where © = wlel + w262, and
{e1,en,e3} is the canonical basis of R3. Then,

T
lim sup [[v(8)|| gm = oo < / 1320 dt = co.
t /T 0 00,1



Remark 1.1. For plane flows & = 0. Hence,
as a trivial corollary of the above theorem we
obtain the global regularity for the 2-D Euler
equations.

Remark 1.2. It would be interesting to im-
prove the above result by replacing ||&f 30 by
oco,1

||(:)||Loo, or even ||(:)||Bgooo

For the 3D Navier-Stokes case it was possible

to obtain the Serrin type of regularity criterion

by ||&]| ;pa, where L9 = LP(0,T : LI(R3)), 2 +
T p

— 1 is the scale invariant space.
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( C. and H-J. Choe, '99)



(ii) Axisymmetric case(with nonzero swirl):

Theorem 2 Let v be the local classical ax-
isymmetric solution of the 3-D Euler equa-
tions, corresponding to an axisymmetric initial
data vg € H™(R3). We decompose w = &+ &y,
where & = w"er + w3e3 and &y = wley. Then,

T
lim sup [[o(8)|| gm = oo < / |Gt g0 dt = oo,
t /T 0] 00,1



Remark 1.3. Similar remarks to Remark 1.2.
We note that for the axisymmetric 3-D Navier-
Stokes equations with swirl it is possible to
control the regularity only by ||59||L%q with

24+2=1.(C. and J. Lee, '02)

Remark 1.4. Compare with the previous re-
sult(C. and N. Kim, '96):
The blow-up is controlled by the integral,

[T 180l [1 + 10g™* (1300 o)



2. Ouline of Proofs

(i)Case without any symmetry:

e Multiply the vorticity equation by es,

Ow3

—  F VP =(w V)v-es  (B)

e \WWe consider the particle trajectory mapping
X (a,t) defined by
0X (a,t)

o =v(X(a1),1),  X(a,0) = R,

e Integrating (F3) along X(a,t), we have

W3I(X(a,t),t) = wg(a)—l—/ot[(w-V)v-eg](X(oz, s), s)ds.

e Taking supremum over o € R3 yields

t
@l < wdll oo+ [ 11(w-V)v-e3)(s)]loods.
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e Below we estimate the vortex stretching term,

(w-V)v-e3

pointwise.

e From the Biot-Savart law we compute

O 13 04 Yyl
(z,t) = — €iimPV { -3 -
Oz 47Tl,n£1 . R3 ||yl lyl®

Ly
—= ) €ijiwi(w,t)
3=
= Pij(w)(=,1),

where PV denotes the principal value of the
integrals, and €, is the skew symmetric tensor
with the normalization ej>3 = 1.

e We note that P;;(-) is a matrix valued singu-
lar integral operator of the Calderon-Zygmund

type.
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e WWe compute explicitly the vortex stretching
term:

3
[(w-V)v-e3](z,t) = > wiz, t) (fB t)(e3);
ii=1
1 {w(az,t} X w(x + y,t)
R3

= —PV e
Am y[3 3

y X w(z +y,t)
[y[°
( Set w =& 4+ w3e3)
_ LPV/ {w(a:,t) X w(x + y,t) e
A7 R3 |y |3
gy xe@tuyt)
[y[°
y X 0(z +y,1)
[y[°
3

e Z (,T)Z(CC, t)Pz] (‘D)(:U7 t) (83)j

i,j=1

3
+ > (@, 1)(e3)iPij (@) (w, 1) (e3);.

1,7=1

-3

-e3(y- w(w,t))} dy

- e3 y3wsz(x,t)

-3

€3 (y-&(fc,t))} d
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e \\We have the pointwise estimate:
[(w-V)v-e3](z,t)] < Clo(z,t)||P(@)(x, 1)

+Clw3(z, 1)||P(&) (=, 1)].
e From BY |, — L% we obtain

00,1
[(w-V)v-es]llpe < C|&|pe If(&?) | 1,00
+C|w?|| ool P (@) || oo
W

llP@)lig0
+0|w? || oo P@)l o

~ 112
< Clalo
Oo’

< C

Cllw3 ol mo .
+C|w ||LOOHWHBQO,1

e Substituting this into the inequality for w3,
we obtain the estimate:

|z < oz
t
+C [ 1w =ll@() o ds
t 5 |
+C [ 1@()N130 ds.
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e T he Gronwall lemma vyields
3 3 e
w3l < e exp (C [ @)l g0 ds)
t t
~ 2 ~
+C [[l2)3e e (0 [ 18z dr)ds
t
< (||w8||Loo+ [ 13612 ) 9
t
X exp (c/o 1) 0 1ds).

1
2

e Set (fOTH&(t)HQBO dt) = Ap, then we de-
oo,1
duce that
T T _ T 3
[ lo@lzede < [T 1E@Ipsedt + [ 3@l
< VTAr + |[lwgllp + CAZ| Texp (CVTAr) .

implying the necessity part of the criterion.

e [ he sufficiency part easily follows by triv-
ial application of the imbedding, H™(R3) —
BY [ (R3) for m > 3.

14



(ii) The case of Axisymmetry :

e The velocity field v(r,x3,t) has the represen-
tation:

v(r, x3,t) = 0" (r, 23, t)er+0? (r, 23, ) eg+03(r, 23, ez,

where r = \/x% + 3, and

er = (%

5’31 2 L2 X1

O) eg = (—7 o ,0), e3=1(0,0,1).

e [ he vorticity w = curl v is computed,
w=wer+ wHeQ + w3e3,

where

w = —(%3’09, W = 8933vr—8rv3, w3 = —&«(fr‘ve).
r

e \We recall the notations:

v=1v"er+ v3e3, o =w'er+ w3e3,
and w = @ + Iy with Ty = wley.
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e [ he Euler equations for the axisymmetric so-
lution:

ov” . = op
)" = 22
5t (v-V)v 5
ov? =\ @ v v?
bl TAVA — _ ,
ot + (@ V) r
ov3 ~. 3 op
- TRV, =
ot + (@ v 0x3
div v =0,

v(r,z3,0) = vo(r,x3),

0

where we set V = eT% + e35.;
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e In the axisymmetry the Euler equations in the
vorticity formulation becomes

)
8; + (T - ) (@ - )"
3

%Jr(@' 3% - V)03

0 _1 (? L

15Vl |Z=l=w@-V =
lﬁt_FQJ ] <7°> (& ) (7’)
div 5=0, curl a=a% ... (%)

e \We use the notation:
(é%ﬂ° 8vr\
_ 07\ 3

ov ov Oxy, k=1
\ or 8x3)
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e We can check easily

Vi(z)| < V() Ve € R3.

e The elliptic system (*) implies

Vi(z) = P(dy)(z) + Codg(x),

where P(-) is a matrix valued singular integral
operator of the Calderon-Zygmund type, and
Cp is a constant matrix.

e \We also consider the particle trajectory map-
ping X(a,t) defined by

0X (o, t)

P (X (a,t),t), X(a,0)=a.

18



e [ hen, integrating the vorticity equations along
X (o, t), we find that

W (X (), 1) = wg(a)+/ot(@v)v"“()'z(a, s), s)ds,

W3(X (o), t) = wg(a)+/ot(&v)v3()'z(a, s), s)ds.

e Taking supremum over o € R3,
t oy~
BOI < 1ol + [ 18] ol F5()]|ovds

t
< Iloll + [ 15()]1o ] T5(s)|oeds.

e By Gronwall’s lemma,
t
5Ol < Gollzeexp ([ 195(s)]1ocds)
t
IBollzsexp (C [ 1V3()ll 50 _ds)

t
< [Gollz=exp (C [ Ido()llgo_ds)-

VAN
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e Combining this with

156 ()l Loe < Cll@p()ll g0

we find

T T
| @it < [ 150 pocdt
T —
+ [ 1800 et
3 T
< Tl|woll oo exp C/O |@p () o dt

T
+C [ @Dl ot

e [ hus, the BKM criterion implies the neces-
Sity part.

e Similarly to the previous proofthe sufficiency
part easily follows from the imbedding,
H™(R3) — BY | (R3) for m > 3.
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