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Setting:

Exterior domain (). = (), simply-connected ob-
stacle.

Incompressible Navier-Stokes equations:
oru —vAu+u-Vu=-—Vp, divu=0
with Dirichlet boundary conditions.

Limit flow as € — 07

Initial data (motivated by inviscid study):
ug = Kelwy] + aH:
where
e initial vorticity wy is fixed (independent of ¢),
smooth and compactly supported outside 0;
e initial circulation ~ of ug along OS2 is indepen-
dent of .

K. is the V- of the Green function and H; is a
canonical harmonic vector field



Inviscid case

Circulation y =a—m, m= [wy.

The limit vorticity is
curlu = w + ydy
with limit equation in vorticity formulation

Orw + div[(v + *yH)w} =0

-

om|x|?

v =K|w|, H =

Here, K is the usual kernel of the Biot-Savart law
- 2
in R-.

The equation of the limit velocity is roughly the
Euler equation with an additional term which takes
into account the circulation and a (fixed) Dirac mass

in 0.



Viscous case

Convergence to the Navier-Stokes equations in the
case of small circulation:

Theorem. There exists 7y > 0 independent of ¢
such that if |y| < 7 then us converges to the solu-
tion of the incompressible Navier-Stokes equations
in R? with initial vorticity wg + 4.

The initial data makes sense. The circulation van-
ishes instantly.

The limit vorticity at time ¢ = 0 has a Dirac mass

in 0.

In R? the global existence holds (Kato, Cottet,
Giga-Miyakawa-Osada) but uniqueness was proved
only very recently (Gallagher-Gallay).

The existence in the full plane case uses L1 es-
timates on the vorticity; these are unavailable for
domains with boundaries.



L? a priori estimates?

From the inviscid work we know that the behavior
of the initial velocity can be described as follows
ofor |z| <1: ~H
o for x| > M: «oH
e plus a remainder bounded in all LP, 1 < p <
Q.

Two problems occur:

e initial velocity not square-integrable at oc;
e initial velocity not square-integrable in 0.

The problem at infinity subsists for ¢ > 0 but can
be solved because it is independent of .

The problem in O disappears for ¢t > 0, but local
estimates are required. These are done with a fixed
point argument and demand smallness of circula-
tion.

Once the local estimates done, global L? estimates
are not difficult.



Local estimates

Weighted in time norms:
|
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so (via Maremonti-Solonnikov, Dan-Shibata and
the change of functions f-(t,z) < f(e%t, ex))

pt < C(HquM

Hw w”qz,t+ ”wHQLt quzat

+ |1l gy 12l g 1)
where

1
+ =,
g ¢ 2 p

We need to have that ||u||p ¢ is small. This re-
quires the smallness of the circulation and demands
to show that S(t)H: belongs to the weighted in
time spaces.



We assume that ¢ = 1, set T : Q@ — B(0,1)°
a biholomorphism, S = 7! and prove that & =
Stokes|h(|T|)Hg)| belongs to the weighted in time
space on R

Obvious in the circular-symmetric case by the max-
imum principle. In the general case we reduce the
problem to that case by a change of variables:

u= (VD) voT
1
Orv + VVL(\S’P curl U) = —Vq
-
diveo =0, v(0,y)= Qh(|y|)
2|yl

Next, W = v — U (U = leading term) verifies

1
Oy + VVL(]S’P

curl E) = —V
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By duality
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Global estimates

Energy estimates on w:
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We multiply by tCHC_l (a > 0) and integrate
w.r.t. 17:

t2 a v 2 < g tCL"‘C
° [Vw(s)|72 < =15 — [lw(ta) |25

to
+ (a+0)/0 Hw(S)HQLQSa_ldS.
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Therefore, w is bounded in
2 1
Lipe(Ry5 L7) N Ly, (Rys )
for all p € [1,2).

Similar estimates easily hold for S(t)ug = u — w.



Strong convergence

We need some equicontinuity in time. We extend
everything with 0 inside the obstacle. To avoid esti-
mating the pressure, we use the vorticity equation.

€ CSO(RQ) div free test vector field

W such that V¢ = ¢ and 1(0) =
Smooth cut-off functions:

gy = g(-/A) localizes in |z| > A

hy = h(-/\) localizes in |x| < A.

Multiply the vorticity equation by g-Yhp:

/[ u(te) — u(ty)]| V= (getphpg) =
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and send R — oo. Then
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and finally, since u(ty) — u(t;) € L?,

Rliiﬂoo (ulte) — u(ty)] V5 (getphp)
= (geu(to) — geu(ty), @) + ofe).

By the Ascoli theorem, the strong convergence of
U in LZQOC(]Ri x R?) follows.



Passing to the limit

We denote by u the limit velocity.

p € C°(RY x R?) div free test vector field

W such that V¢ = ¢ and 1(¢,0) = 0.

Multiply the vorticity equation by gpihp, inte-

grate in time and space and pass to the limit £ — 0
to obtain

\<5’tw> 977th>/ - \<w> A(gnth»}

M s
— (uw, V(gybhg)) =0

We finally take the limits n — 0 and R — o0

§ lim J3 = Vu
N

lim lim Jy = //wAw (A, ).

R—oon—0

lim lim J; = (0,
R—oon—0 b= gp}

u verifies the Navier-Stokes equations in the distri-
butional sense.

The initial data follows from the equicontinuity in
time and the inviscid result.



