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Outline of the talk

Motivation (Kraichnan-Batchelor theory).

Weak solutions to Euler equations: vanishing viscosity limit,
regularization by mollification.

Enstrophy defects and balance equations. Eyink's conjec-
ture.

Finite enstrophy data, wg € [2: existence of positive defect,
transport of enstrophy density (velocity unbounded).

Infinite enstrophy data, wgp € [2:° N BSOO: existence of a
well-defined defect, counterexample to Eyink’'s conjecture.

Conclusions.



Motivation

2D Turbulence: with energy spec-
trum E(k) ~ k3 4 log (Kraichnan-Batchelor, ~ 1967-69).

Energy dissipation ~ 2v{2 = negligible for small viscosity.
Enstrophy dissipation cannot be neglected as v — O.

As viscosity — 0, turbulent solutions to Navier-Stokes give
rise to weak solutions to 2D Euler (Onsager 1949).

is conserved for regular Euler
flows. A paradox.

At small scales and high Re, appear = exact
steady-state solutions to 2D Euler (McWilliams 1984).



Vorticity formulation for 2D Flows

Vorticity w-velocity v formulation to 2D Euler:

Ow + u-Vw =0, (1a)
u—= K *w, (1b)

J_
where K(x) = 5 | Snla]? is the Biot-Savart kernel. (1a) is a transport
equation for w

Vorticity -velocity formulation to 2D Navier-Stokes:
Ow + u-Vw = rvAuw, (2a)
u= K *w, (2b)

where v is the viscosity coefficient. (2a) is a transport-diffusion
equation for w



Weak solutions to 2D Euler
Definition. w € L>®([0,T); LP(R?)), p > 4/3, is a weak solution
to 2D Euler with initial data wg € LE(R?), if Vo € C°([0,T) xR?),

T
/O 2 P + Vo - uw dxdt + /]RQ o(x,0)wo(x) de = 0,

and u € L>®([0,T); L?(R?) + L®°(R?)).
w e LP(R?), p>4/3 = uww € L1(R?).

Uniqueness is proved for nearly bounded vorticity (Yudovich,
Vishik).

Existence holds for measures wg € (BM . 4 + Lg) a ngclj,

e.g. vortex sheets (Delort, Majda, Schochet, Vecchi-Wu), using
a different weak formulation.



Enstrophy

Define enstrophy with

. ¥ describes the space-time distribution of enstrophy.

Study transport of ¥ by irregular velocity field v = renormalized
solutions to linear transport equations (DiPerna-Lions):

Definition. u € L1([0,T], W,s1), w € L>([0,T], L9).

w IS a renormalized solution to oiw + u-Vw =0 if
OB(w) +u-VB(w) =0,

for all 8 admissible € A= {8 € C1 N L>® 3 =0 near 0}.



Renormalized solutions are unique given uw. T he distribution
function and any rearrangement-invariant norm is preserved
if divu = 0.

2D Euler solution w € L°([0,T],LP), p > 2, is the unique
weak and renormalized solution to the linear transport equa-
tion = (2 exactly conserved.

If p > 2, then B(s) = s2 can be taken as an admissible func-
tion = ¢ is also transported by u (Eyink).

2D Euler solution w € L°°([0,T],LP), 1 < p < 2, is the unique
renormalized solution if limit of exact smooth solutions.
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Formulation of the problem
Reconcile KB theory with solutions to 2D Euler:

May be possible to define non-trivial enstrophy flux as limit
of source terms in local balance equation after regularization
(Eyink).

e Finite-enstrophy case: w® € L2 = u € BMO, § e L1,
Need to define non-linear term w6 in transport equation.

e Infinite-enstrophy case: w9 € L2 N BY .

Meaningful enstrophy defect from renormalized enstrophy.

Regularization by vanishing viscosity and mollifying equation.
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Balance equations
1
Define Qc(t) = §||we(t)\|%2. The density Ye(x,t) satisfies:

Or¥e + div [ue¥e + we ((uw)e — uewe)] = —Ze(w), (3)
where

Ze(w) = —Vwe - ((uw)e — Uewe) .

with (uw)e = jJe * (uw).

1
Similarly, Q.(t) = §||w,/(t)||%2. The density ¥, (z,t) satisfies:

Oy + uy - VI, — vAYy, = —ZY(wy), (4)
where
ZY (wy) = v|Vwy|? > 0.



Enstrophy defects

. w any weak solution to Euler
7" (w) = lim Ze(w) = lim [~ Vwe - ((uw)e — uewe)],

enstrophy disspation due to irregular transport.

. w Viscosity solution

ZV(w) = lim Z¥(w) = IimOV|Vw,/|2,
V—

vr—0

enstrophy dissipation due to viscosity.

ZV(w) > 0 if it exists as a distribution.

w will be called dissipative if Z1 exists and Z!(v) > 0.



Evink’s conjecture (full plane)
Consider initial data with locally infinite enstrophy:

wo IS in the Besov space BSOO O LP, p>2 = velocity ug = K xwg
has Kraichnan-Batchelor energy spectrum:

Viscosity solutions w = lim,_,gw" exist such that

su Y < C.
sup llw”ll 22¢fo,71,89 )

Conjecture : Let w be a viscosity solution with data wg. Then:
Z(w) =z (w) = Z2V(w) > 0, in D

Moreover there exist initial data for which Z(w) > 0.
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The L2 case

Enstrophy density ¢ is renormalized solution to ¥+ div(u¥) = 0,
but not necessarily a weak solution =
non-zero enstrophy defect may exist even if {2 conserved.

ZV(w) = 0: by positivity enough to prove

vr—0

lim A dr dt = |lim V 2[ dt =0
i w) dx dt i V/ w t 3
/() /]R2 V( ) vr—0 0 ” V” 2
Direct consequence of energy conservation plus strong conver-

gence w, — w in L2

But Z1(w) = lime¢ Ze and Ze = [—Vwe - ((uw)e — uewe)] does not
have distinguish sign.

3 w € L2(R?) such that u8 = (K *w)w? ¢ D'(R?).
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Look at of L2, rearrangement-invariant
space where u¥ can be defined.

Choose w € L2log L1/* so that ¥ € LllogL1/2 ngé continu-
ously.

Definition. w € L?log LY4 N LY, u= K xw, ® € CF,

(ug, P) = —/

o) [ K@= ®@)0() dvdy.

Use antisymmetry of Biot-Savart kernel (cf. Schochet’s proof of
Delort theorem).
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Theorem 1 (H. Lopes, M. Lopes, A. M.).

Consider a viscosity solution w € L>([0,T); L?(log L)1/4(R?)) to
2D Euler. Then the following equation holds in the sense of
distributions:

Ar(Jw|?) + div(u|w|?) = 0, u= K *w.

Theorem 2 (H. Lopes, M. Lopes, A. M.).

Let w e L([0,T); L2(log L)Y/4(R2) N L1(R2)) be a weak solution
of 2D Euler. Then Z1(w) exists (as a distribution). If w is a
viscosity solution, then Z1(w) = 0.

If 3w e L([0,T], L2 log L1/%) with ZT(w) # 0, nonuniqueness of
solutions to 2D Euler follows.
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Proof of Theorem 1:
e w Viscosity solution. Pass to the Ilimit v — 0 in

T T T T
/ / 01y d:vdt—l—/ Vo-u, Y, dedt = / / vAp Y, dxdt—/ / 0Z"(wy) dxdt.
0 R2 0 R2 0 R2 0 R?2

e w,(t) — w(t) strongly in L2(R?) from energy estimate:

t
w®liz2 = lov@ g2 =v [ [ Vol dedt.

e 9, — ¢ in LY([0,T) x R?), ZY(w,) — 0 in L1([0,T) x R?)
= in the limit:

T T
/()/RQQO,gﬁdxdt—l—llm/()/RQVgo-uyﬁydxdt:O

r—0
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e Analyze behavior of non-linear term as v — O:

T
— /O /RQ wu(y,t) 2 K(y —x) - Vp(zx,t)9,(x,t) dr dydt.

e Product estimate:

: 2
||f gHL log L1/2 < 4(max{||f||L2|Og L1/4 | g||L2Iog L1/4}) :

Use Luxemburg norm:

1l zp10g Lo = inf{k >0 [ Apa(f@))de < 1}.

Exploit that Ap o(s) = [s 10g%(2 + s)]P is non-decreasing and
convex.

15



e ¥, — ¥ strongly in L1([0,T) xR?) = K x(V¢,) — K x (V)
weakly.

e Uniform bound for wy(t) in L2log L1/4 from divergence-free
condition on u and convexity of Aj q 4!
le/(t)HLQk)g L1/4 < HWO”LQ log L1/4
Product estimate 4 uniform bound = {V¢¥,} bounded in
L>((0,T); L(log L)1/?).

e Biot-Savart operator K smoothing of order 1 and
L>((0,T), L(log L)1/2) — L>®°((0,T), H })joc =

{K xV¢9,} is bounded in L>®((0,T); L2 ).
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e If Supp ¢ C By, show |K x (Vo) (y,t)| < Q2/|yl, ly| > 2R =

K % Vo, — K x (Vo) weakly in L®((0,T) x B(0,2R)).

e w, — w strongly in L([0,7] x R?) from uniform bound on L1
norm (maximum principle) and strong convergence in L2.

e Non-linear term:

T T
/ / wy K 5 (Vo) de di +/ / wu K 5 (Vo) de di
0 JBop o /B,

— (w, K *x (V¢ 19)) = (uw, Vo),
since each integral forms a "weak-strong’’ pair.
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Theorem 1 is nearly optimal = there exist w € L2log L1/ such
that (K xw)w? =ud ¢ D'.

1

Define w™(z) =
||| log |z|[*

XD*(0:1/3)(®), uT = K x w®, where

D1(0;1/3) = D(0,1/3) N {xo > 0},

1/2 < a<1, {D(0;1/3):D(0,1/3)ﬂ{$2<0}-

Show [uT(z)| > C|log |z||*~* near origin.
Note: uT = u — u—, where « radial and v~ harmonic in HT.

uw = K *w bounded, because w € L2 radial.
Obtain growth of v~ by evaluating K xw™ on real axis and using
potential estimates on harmonic extension.
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Initial data with infinite enstrophy

Look at data in L2 N BQOO, rearrangement-invariant space of
functions with KB spectrum

Mildest behavior of w is for radia/ vorticity (K is odd = cancel-

lations in K xw): w = qb(zv)— ¢ cut-off near the origin.

Construct exact steady viscosity solution w to 2D Euler such that

2Ty =0,  ZV(w) =T

do, t > 0.

Strictly dissipative solutions exist.

Counterexample to Conjecture: notion of enstrophy defect de-
pends on the approx segquence.
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w radial = v = K % w exact steady solution to 2D Euler, since
u L Vw. Example of coherent vortex (DiPerna-Majda).

ue L we SO that Ze(w) = —Vwe - ((uw)e — uewe) = 0.
wy Solves heat equation.
Heat kernel estimates and homogeneity of w give

U 47'('3 _|_
||Z (w)“Ll([O,t]XRQ) = T + 0(1), v— 07", t > 0.

= Z"(w) uniformly bounded in L1 =
31, and a Radon measure p such that ZVk(w) — u.

Study support properties of u to identify limit.
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Conclusions

e Solutions in L2 such that Z4'(w) > 0 would suggest that non-
linear interactions are responsible for enstrophy dissipation at
very high Re.

e Counterexample indicates that when the enstrophy is infinite,
it is not necessary to have non-linear interactions to sustain
the cascade picture.

e [ he behavior of radial vorticity should be the weakest among
the same reqgularity class. Use comparison estimates for so-
lutions to parabolic equations with spherically symmetrized
data.
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