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Abstract:

• Two-dimensional models have been proposed in recent years.

• These contain aspects of the underlying dynamics of the three-dimensional incom-
pressible Euler equations

• while being more tractable.

• This presentation will introduce a new model in this class.

• It inspired by fully three-dimensional solutions as well as

• a new conditional restriction upon Euler [Gibbon et al.(2006)] that shows that
require symmetrical alignments if there is to be a singularity.

• Model: Equation for growth of vorticity and curvature

• plus the usual advection equation.

• Goals: Encourage mathematicians to study it.

• Provide a setting to test the particular numerical issues currently being contested.
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CSCAMM: Challenges of Incompressible at High ReMathematical Issues

• Outstanding modern mathematical problem, $1 million prize:

• For 3D incompressible Navier-Stokes with finite energy, etc.
Either:

– Find an example of a singularity of 3D incompressible
Navier-Stokes

– Prove that Navier-Stokes is regular.

– Folk-belief: Navier-Stokes is regular

• Related: 3D incompressible Euler, what is known:

– Beale, Kato, Majda (1984), ∫ ‖ω‖∞dt→∞
– Numerical work: Kerr (1993) anti-parallel vortices, tests:

Is
1

‖ω‖∞
∼ (T − t)?

1

‖eyy‖∞
?

1

∫ dV ωieijωj
?

– Folk-belief: Unknown.

• Constantin, Fefferman, Majda (1996) and Deng, Hou, Yu
(2005): relations on time integrals of curvature and velocity:
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Diagram of the interaction of anti-parallel vortices. From an initial condition

of anti-parallel vortices separated at their closest approach by δ, if ν 6= 0

there is reconnection that forms new vortices indicated by the dashed curves.

However, if ν = 0, a singularity can form when δ = 0 if the vortices are pushed

together by the self-induced strain indicated by e.
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CSCAMM: Challenges of Incompressible at High Re Steps in vortex reconnection

taken from a low resolution,

low Reynolds number calcu-

lation Melander and Hussain,

1989. From top to bottom,

the first two frames show the

anti-parallel vortex tubes be-

ing pushed together by self-

interaction through the law of

Biot-Savart. The third frame

shows that reconnection has

progressed to form two new

tubes orthogonal to the orig-

inal tubes. In the bottom

frame the new tubes are sep-

arating.
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Dependence of 1/‖ω‖∞, 1/‖eyy‖∞ and
1/ ∫ dV ωieijωj on time from the anti-parallel
Euler calculation Kerr, 1993 showing convergence
to a singular time of about T = 18.7.
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CSCAMM: Challenges of Incompressible at High Re
Three-dimensional visualization of the singular col-

lapse of anti-parallel vortex tubes in the incom-

pressible Euler equations at t = 17. One half of

one of the anti-parallel vortices, cut through the

symmetry plane of maximum vorticity with z ex-

panded by 4 is shown. This is a a black and white

version of the 1996 color cover figure of Nonlinearity

[51]. Three visualization procedures are used: mesh

lines with shading, an isosurface, and vortex lines.

This illustrates how the physical space structure

can be divided into three regions, inner, intermedi-

ate, and outer by the length scales R ∼ (Tc − t)1/2

and ρ ∼ (Tc−t). The inner region within a distance

ρ ∼ (Tc− t) of ‖ω‖∞ is visualized with bright lines.

‖ω‖∞ is among the brightest lines. The dominant

feature is an isosurface set at 0.6‖ω‖∞ indicating

the region out to R, the extent of the intermediate

region. Beyond the isosurface is an outer region in-

dicated by swirling vortex lines that originate from

within the surface.
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CSCAMM: Challenges of Incompressible at High Re

Computational Challenge

• Thin but long structures localized in two directions.

• Slower collapse in the third direction.
Diagram of the scaling of the structure formed by overlaying a plane through the symmetry

plane and a plane through the intermediate swirling region.

For small r < R, vorticity

growth is confined to the

two nearly perpendicular

vortex sheets represented

by the pairs of vertical

and horizontal lines sepa-

rated by ρ and of extent

R. For r > R, where vor-

ticity is no longer growing,

the residual vorticity is

found in swirling regions

whose width increases as

ρ(r) ∼ r2.
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HISTORY OF EULER
Method, then YES or NO on singularity

• 1975 Early Taylor-Green.
Inconclusive.

• 1979 Pade of Taylor-Green. Yes

• 1983 DNS of Taylor-Green for Euler
No

• 1984 Beale-Kato-Majda.
Bounds for Euler

• 1986 Chorin/Siggia.
Vortex filaments. Yes

• DNS = Direct numerical simulation

– 1987 Early: NO
too much flattening

– 1989 Spectral: YES
too crude

– 1990 Nested DNS: NO
bad numerics

– 1993 Filtered initial conditions:
YES ‖ω‖∞ ≈ 18/(T − t)

– 1998 Cylindrical vortex [Grauer et al.(1998)]:
YES with‖ω‖∞ ≈ 18/(T − t)

– 2006 Hou and Li, filtered spectral:
NO

– 2006 Orlandi and Carnevale, new
claims of singular behavior with un-
resolved problems
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GUIDELINES FOR SIMULATIONS
Generally agreed upon at these meetings:

• IUTAM Symposium on Topological Fluid Dynamics, Cambridge, England, August
1989.

– U. Frisch, F. Hussain, R.M. Kerr, A. Pumir E.D. Siggia.

• Program on Topological Fluid Dynamics, Institute for Theoretical Physics, Santa
Barbara, California, Fall 1991.

– R.M. Kerr, R. Pelz, A. Pumir E.D. Siggia, N. Zabusky.

• Research Institute in Mathematical Sciences, Kyoto, Japan, October 1992.

– R.M. Kerr, A. Majda.

• Institute for Advanced Studies, Princeton, March 2003,

– A. Bhattacharee, U. Frisch, R.M. Kerr, N. Zabusky.

– This meeting was instigated by the untimely death of our friend and collegue
Rich Pelz.
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CSCAMM: Challenges of Incompressible at High Re

• These are some of the guidelines:

– Run only Euler. Do not try to reach conclusions about Euler using a series of
decreasing viscosity Navier-Stokes calculations.

– Use refined meshes.

– Complementary pseudo-spectral calculations can still be useful to confirm the
numerical method.

– In addition to the quantities already listed, positions of maxima should collapse.

• Suggestions based on simulations is to look for:
–

xp −X(T ) ∼ T − t , zp ∼ T − t

– sup(|v|2) ∼ T − t where v is the axial velocity in the direction of vorticity in
the symmetry plane.

– Curvature blowup as κ−2 ∼ (T − t).
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CSCAMM: Challenges of Incompressible at High Re

‖ω‖∞ and α contours in the symmetry plane from (left) t = 15 [Kerr (1993)] and
for t = 7.2 from [Pumir & Siggia (1990)] while I think it is still singular.

‖ω‖∞ and α contours in the sym-
metry plane for t = 8.3 from Pumir & Siggia (1990) after I think numerical effects are
smoothing the flow.
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CSCAMM: Challenges of Incompressible at High Re

2D models

• Stretched two & one-half dimensional Euler system proposed by [Gibbon et al.(1999)],
calculated by [Ohkitani & Gibbon (2000)].

– All three velocity components are included.

– Variation in one spatial direction is at worst linear.

– {u1(x, y, t), u2(x, y, t), zγ(x, y, t)}.
– It was shown subsequently [Constantin (2000)] that this is a Ricatti system

– And there is singular behavior in γ.

• Surface quasi-geostrophic model.

– q,t + J(ψ, q) = 0 q = −(−4)αψ, α = 1
2 (2D Euler is α = 1)

– Bounds on the curvature of active lines restricting singularities [Constantin et al.(1994)]

– Probably not singular.

– Contour dynamics version probably is singular.
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CSCAMM: Challenges of Incompressible at High Re

Stretched 2.5D

U (x, y, z, t) =

uv
w

 =

 u(x, y, t)
v(x, y, t)

zγ(x, y, t) +W (x, y, t)


γ = uz,z 6= α = ω · Sω because ω̂ · â 6= 1

u⊥ = (u, v) ∇(x,y) = (∂x, ∂, y) ∇(x,y) × u⊥ = ωẑ ∇(x,y) · u⊥ = −γ
Dγ

Dt
+ u⊥ · ∇(x,y)γ = −γ2 − P γ(t)

−P γ = −p,zz = 2 < γ2 >= C(t)

DW

Dt
+ u⊥ · ∇(x,y)γ = −γW

Dωz
Dt

+ u⊥ · ∇(xy)γ = γωz

−∂p
∂z

= z

(
∂γ

∂t
+ u⊥ · ∇(xy)γ + γ2

)
+

(
∂W

∂t
+ u⊥ · ∇(xy)W + γW

)
−p(x, y, z, t) = 1

2z
2

(
∂γ

∂t
+ u⊥ · ∇(xy)γ + γ2

)
+z

(
∂W

∂t
+ u⊥ · ∇(xy)W + γW

)
+P (x, y, t)
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Symmetry Plane
(x, y) is in the symmetry plane, z is out-of-plane, (∂s = ω̂ · ∇(xy)),

κ = κn̂ = ω̂,s = (ω̂ · ∇(xy))ω̂.

u⊥ = (ux, uy) = (u, v) 6= 0 uz = u3 = 0 ω = ωω̂ 6= 0

u⊥,z = 0 6= 0 uz,z = ω̂ · Sω̂ = α 6= 0 ω,z = 0

u⊥,zz = u⊥,ss − (κ · ∇(xy))u⊥ α,z 6= 0 ω,zz = ω,ss − (κ · ∇(xy))ω

3D Biot-Savart

u(x) =

∫
ω × (x− y)

|x− y|3
d3y = ∇×A = ∇×

∫
ω

|x− y|
d3y

where

A(x) =
Γ

4π

∮
ω̂

|x− y|
ds with y = x(s) (eq− A)

• Define ω̂j = ±ẑ, n̂j, and b̂j = ω̂j × n̂j
as the tangent, normal and bi-normals to vortex lines at (xj, yj) through the sym-
metry plane only.

• xn = n̂j · (x− xj, y − yj), xb = b̂j · (x− xj, y − yj), and xt = z(ẑ · ω̂).

Expand this, put in (eq-A) integrate along arclength s to an arbitrary distance ε.
Along vortex lines

ω̂ = ω̂j + κsn̂j x− y = (xn − 1
2κs

2)n̂j + xbb̂j + (xt − s)ω̂)
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|x− y|−1 =
(
(xn − 1

2κs
2)2 + x2

b + (xt − s)2
)−1/2

≈ (r2 + s2 − κxns
2 − 2xts)

−1/2

≈ (r2 + s2)−1/2

[
1 + 1

2

(
xnκs

2 + 2xts

r2 + s2

)]
to get

Aj =
Γ

4π

{
2ω̂j log

ε

r
+ κxnω̂j

(
log

ε

r
− 1
)

+ 2κxtn̂j

(
log

ε

r
− 1
)}

yields the velocity

u⊥j ∼
Γ

2π

(xn
r2

bj −
xb
r2

nj

)
+

Γ

4π
κ log

ε

r
bj −

Γ

4π
κ

(
x2
b

r2
bj +

xnxb
r2

nj

)
This is the velocity in equation (2.3.9) of Saffman’s book.

• It neglects:

• Any core effects, out-of-plane velocity.

• The fixes:

• The vector potential gives: uz = ẑ· Γ

4π

2κxbxt
r2

ω̂ = 0,

• yielding uz,z = α =
Γ

4π

2κxb
r2

6= 0

• So that ∇(xy)·A = 0 add to A : κxnω̂j
x2
t

r2
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CSCAMM: Challenges of Incompressible at High Re

Continuum 2D system
Assume the velocity in the symmetry plane, obeys

u⊥ = ∇(x,y) × ψ +∇(x,y)φ

where φ = φa + φb and ∇2
(x,y)ψ = −ω, ∇2

(x,y)φa = −α and ∇2
(x,y)φb = 0

∇2α = ∇2
(x,y)α + α,zz = −ω̂ · (∇(x,y) × ωκ)

where κ = κn = ω̂,s = (ω̂ · ∇)ω̂ ,

This is a set of 4-th order equations. IF we know α,zz. Assume α,zz = 0,
then the time derivatives are

Dω

Dt
= αω

Dκ

Dt
= ∇(x,y)α + (κ · ∇(x,y))u⊥ − 2ακ

This comes from the quaternion formulation [Gibbon et al.(2006)] and (Gibbon,
private communication). Use

D

Dt
ω̂ = χ× ω̂ = 0, χ = 0

Dκ

Dt
= (χ× ω̂),s − ακ = χ,s × ω̂ + χ× κ− ακ

Dκ

Dt
= (Sω̂ − αω̂),s − ακ = (Sω̂),s − α,sω̂ − 2ακ

Then apply the conditions of the symmetry plane.
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Calculation with two vortex filaments with finite cores
Assume two 3D vortex filaments that are mirrored across a dividing plane.

• ω̂1 = (0, 0,−1), ω̂2 = (0, 0, 1) and ω2 = ω1 = ω ω̇ = αω

• If x1 = (x1, y1) = (x, y) then x2 = (x2, y2) = (x,−y), ẋ = u⊥

• If κ1 = (κx, κy) then κ2 = (κx,−κy) κ̇ = ∇(x,y)α + (κ · ∇(x,y))u⊥ − 2ακ

• x can be neglected.

• Set y = d with xn = −2d, xb = 2d, r2 = 4d2

• Rosenhead regularization of core with thickness a. ȧ = −α2
2 a

• Velocity due to vortex ω̂2 using a.

u2⊥ =
Γ

2π

(
xnb̂2

r2 + a2
− xbn̂2

r2 + a2

)
+

Γ

4π
κ1

2 log
ε2

r2 + a2
b̂2−

Γ

4π
κ

(
x2
b + a2

r2 + a2
b̂2 +

xnxb
r2 + a2

n̂2

)
• This is used to calculate total velocity and ∇(x,y)u⊥ needed for κ̇.

• Total velocity in y , self-induced plus that to ω̂2 : uy =
Γκnx
8π

log
a2

4d2/a2

• Stretching: α2 =
Γ

4π

2κxb
r2 + a2

=
Γ

4π

4κdnx
4d2 + a2

• Curvature κ̇ = [∇(x,y)α + (κ · ∇)uω⊥] + [(κ · ∇)uκ⊥ − 2ακ]

• stretching decay
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∇(x,y)α + (κ · ∇)uω⊥ = Γκ
2π(4d2+a2)

[
ny

8d2

4d2+a2 , nx
2a2

4d2+a2

]
(κ · ∇)uκ⊥ − 2ακ = 2dΓκ2

4π(4d2+a2)

[
−n2

x − 4n2
x − n2

y
4d2−a2

4d2+a2 , 2nxny − 4nx, ny]

= Γκ2d
2π(4d2+a2)

[
−5n2

x − n2
y
4d2−a2

4d2+a2 , −2nxny]
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CSCAMM: Challenges of Incompressible at High Re

Upper left and right: α, κ and uy blowing up. α ∼ 1/(T − t).
Lower left: d/a→≈ .3. Lower right: ny →≈ .9, nx →≈ .4.
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Upper right: α, u2
y, κ

2, a2, d2 ∼ 1/(T − t). Dotted lines are extentions to T =
33.658. Comparing α and a2, ω = Γ/a2 ≈ (.048/.003)/(T − t) ≈ 16/(T − t). (labels
100a, 100a should be 100a2, 100d2)
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Conclusions

• Equation for analysis

• There is stretching and potential for singularities due to:

• Agreement with expectations for vortex filaments.

• Could be used for testing regularizations of filaments.
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