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Abstract:

e T'wo-dimensional models have been proposed in recent years.

e These contain aspects of the underlying dynamics of the three-dimensional incom-
pressible Euler equations

e while being more tractable.
e This presentation will introduce a new model in this class.
e [t inspired by fully three-dimensional solutions as well as

e a new conditional restriction upon Euler [Gibbon et al.(2006)] that shows that
require symmetrical alignments if there is to be a singularity:.

e Model: Equation for growth of vorticity and curvature
e plus the usual advection equation.
e Goals: Encourage mathematicians to study it.

e Provide a setting to test the particular numerical issues currently being contested.
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e Outstanding modern mathematical problem, $1 million prize:

e For 3D incompressible Navier-Stokes with finite energy, etc.
Either:

—Find an example of a singularity of 3D incompressible
Navier-Stokes
— Prove that Navier-Stokes is regular.

— Folk-belief: Navier-Stokes is regular
e Related: 3D incompressible Euler, what is known:

— Beale, Kato, Majda (1984), [ ||w||codt — o0
— Numerical work: Kerr (1993) anti-parallel vortices, tests:
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— Folk-belief: Unknown.

e Constantin, Fefferman, Majda (1996) and Deng, Hou, Yu
(2005): relations on time integrals of curvature and velocity:
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Diagram of the interaction of anti-parallel vortices. From an initial condition

of anti-parallel vortices separated at their closest approach by ¢, if v # 0
there is reconnection that forms new vortices indicated by the dashed curves.
However, if v = 0, a singularity can form when 0 = 0 if the vortices are pushed

together by the self-induced strain indicated by e.
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taken from a low resolution,

low Reynolds number calcu-

lation Melander and Hussain,
1989. From top to bottom,
the first two frames show the
anti-parallel vortex tubes be-
ing pushed together by self-
interaction through the law of
Biot-Savart. The third frame

shows that reconnection has

progressed to form two new
tubes orthogonal to the orig-
inal tubes. In the bottom

frame the new tubes are sep-

arating.
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Dependence  of  1/||w]lees  1/|l€yyllec  and

1/ [dVwejw; on time from the anti-parallel
Euler calculation Kerr, 1993 showing convergence
to a singular time of about 17" = 18.7.

O



Three-dimensional visualization of the singular col-
ghlggse of anti-parallel vortex tubes in the incom-
pressible Euler equations at ¢ = 17. One half of
one of the anti-parallel vortices, cut through the
symmetry plane of maximum vorticity with z ex-
panded by 4 is shown. This is a a black and white
version of the 1996 color cover figure of Nonlinearity
[51]. Three visualization procedures are used: mesh
lines with shading, an isosurface, and vortex lines.
This illustrates how the physical space structure
can be divided into three regions, inner, intermedi-
ate, and outer by the length scales R ~ (T, — t)'/?
and p ~ (T.—t). The inner region within a distance
p~ (T, —1t) of ||w||o is visualized with bright lines.

|w||so is among the brightest lines. The dominant

feature is an isosurface set at 0.6||w|/~ indicating
the region out to R, the extent of the intermediate
region. Beyond the isosurface is an outer region in-
dicated by swirling vortex lines that originate from

within the surface.
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Computational Challenge

e Thin but long structures localized in two directions.

e Slower collapse in the third direction.

Diagram of the scaling of the structure formed by overlaying a plane through the symmetry

plane and a plane through the intermediate swirling region.

For small » < R, vorticity
growth is confined to the
two nearly perpendicular
vortex sheets represented
by the pairs of vertical
and horizontal lines sepa-
rated by p and of extent
R. For r > R, where vor-
ticity is no longer growing,
the residual vorticity is
found in swirling regions

whose width increases as

p(r) ~ 12,
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HISTORY OF EULER
Method, then YES or NO on singularity

e 1975 Early Taylor-Green. — 1989 Spectral: YES
Inconclusive. too crude

e 1979 Pade of Taylor-Green.  Yes — 1990 Nested DNi5: NO

e 1983 DNS of Taylor-Green for Euler bad DUH%GHCS o N
No — 1993 Filtered initial conditions:

YES ||w|loo =~ 18/(T —t)

— 1998 Cylindrical vortex |Grauer et al.(1998)
YES with||wl||s ~ 18/(T — 1)

— 2006 Hou and Li, filtered spectral:

e 1984 Beale-Kato-Majda.
Bounds for Euler

e 1986 Chorin/Siggia.

Vortex filaments. Yes NO
e DNS = Direct numerical simulation — 2006 Orlandi and Carnevale, new
— 1987 Early: NO claims of singular behavior with un-

too much flattening resolved problems



GUIDELINES FOR SIMULATIONS
Generally agreed upon at these meetings:

e [UTAM Symposium on Topological Fluid Dynamics, Cambridge, England, August
1989.

— U. Frisch, F. Hussain, R.M. Kerr, A. Pumir E.D. Siggia.

e Program on Topological Fluid Dynamics, Institute for Theoretical Physics, Santa
Barbara, California, Fall 1991.

— R.M. Kerr, R. Pelz, A. Pumir E.D. Siggia, N. Zabusky:.

e Research Institute in Mathematical Sciences, Kyoto, Japan, October 1992.
— R.M. Kerr, A. Majda.

e Institute for Advanced Studies, Princeton, March 2003,
— A. Bhattacharee, U. Frisch, R.M. Kerr, N. Zabusky:.

— This meeting was instigated by the untimely death of our friend and collegue
Rich Pelz.
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e These are some of the guidelines:
— Run only Euler. Do not try to reach conclusions about Euler using a series of
decreasing viscosity Navier-Stokes calculations.
— Use refined meshes.

— Complementary pseudo-spectral calculations can still be useful to confirm the
numerical method.

— In addition to the quantities already listed, positions of maxima should collapse.

e Suggestions based on simulations is to look for:

r,— X(T)~T—t , z,~T—1
—sup(|v]?) ~ T — t where v is the axial velocity in the direction of vorticity in
the symmetry plane.

— Curvature blowup as k™2 ~ (T — t).
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|wl|l and a contours in the symmetry plane from (left) ¢ = 15 [Kerr (1993)] and
for t = 7.2 from [Pumir & Siggia (1990)] while I think it is still singular.

/j |wl|| and « contours in the sym-

metry plane for t = 8.3 from Pumlr & Siggia (1990) after I think numerical effects are
smoothing the flow.
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2D models

e Stretched two & one-half dimensional Euler system proposed by |Gibbon et al.(1999)],
calculated by [Ohkitani & Gibbon (2000)].
— All three velocity components are included.
— Variation in one spatial direction is at worst linear.
_ {ul(xy Y, t)) UQ(ZE, Y, t)v Z7($7 Y, t)}
— It was shown subsequently [Constantin (2000)] that this is a Ricatti system

— And there is singular behavior in ~.

e Surface quasi-geostrophic model.
—q:+J(W,q) =0 qg=—(—A)", a =3 (2D Euler is a = 1)
— Bounds on the curvature of active lines restricting singularities [Constantin et al.(1994)]
— Probably not singular.

— Contour dynamics version probably is singular.
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Stretched 2.5D

u u(z, y,t)
U(z,y,z,t)=| v | = v(x,y,t)
w

Z’}/<ZC, Yy, t) + W(SC, Y, t)
Y=u,,#a=w-Sw because w-a#1

v(Q:,y) — (aﬂca c‘?, y) v(as,y) XU =wz

Dy 2
Dr +u, - V(x,yﬂ = =7 — Pv@)
_PV = P2z = 2 < 72 >= C(t>
DW
Tt +Uu, - V(a:,y)fy = —’}/W
Dw.
Dt +uw, - v(azy)/y — YWy

0 ow
——:z(—7+uL-V(xy)7+72> + (—+uL-V

ot
oW

2 2

Vigy) w1 ==Y

(xy)W -+ ’YW)

VW + ’yW) +P(x,y,t)
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Symmetry Plane
,y) is in the symmetry plane, z is out-of-plane, (0; = @ - V().
Kkl =

A

KR — (:J,S — ((:J . V(xy))(b

u = (Uy,uy) = (u,v) #0 u, =us =0 w=ww #0
u, ., =0+#0 Uy, =w-Sw=a#0 w, =0
U 2z — WU 55 — (KZ . v(:cy))uj_ & 7& 0 Wy = Wss — (F"/ ) v(xy)>w

3D Biot-Savart
u(w)=/wx(m_3y)d3y :VXA:VX/ dy
z -y z -y
where )
Alz) = — ]4 Y s with y=x(s) (eq — A)
Adr [ |z — y| J= b
o Define @; =42, n;, and b;=&; xn,

as the tangent, normal and bi-normals to vortex lines at (x;, y;) through the sym-
metry plane only.

er,=1; (x— 2,y —y,) ajb:f)j-(:c—xj,y—yj), and 1= 2z(2-w).

Expand this, put in (eq-A) integrate along arclength s to an arbitrary distance e.
Along vortex lines

@=w;+ksn; x—y=(r,— k)N, + b + (1, — 5)@)
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lz—y| ™! = ((xn — 1ks?)? + af + (@ — 5)2) ~ (1?4 52 — K, 8% — 2x48) 712

2
2
9 o1/ | [ TpkST + 2148

to get
€

r
A= {20, 1og @, <log; 1) + 2nam, <1og; -1)}

yields the velocity
' rx, T I’ € [ ajg TnTh
This is the velocity in equation (2.3.9) of Saffman’s book.

e It neglects:

e Any core effects, out-of-plane velocity.

e The fixes:
. - I 26224
e The vector potential gives: u, = 2- = 0,
4 r?
[' 2k
o yielding u,,=a=— b;é()
’ 4 r?
i

e So that V(xy)-A =0 addtoA: KTpW j—
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Continuum 2D system
Assume the velocity in the symmetry plane, obeys

UL = Vigy) XY+ Vi@
where ¢ = ¢, + ¢, and V%w)w = —Ww, V%x’y)(ba = —a and V%w)gbb =0

Via = v%ﬁcay)& t Q= —w: <v(:1:7y

where K=rkn=w,;= (@ V)& |,

)lei)

This is a set of 4-th order equations. IF we know ar .. Assume « . = 0,

then the time derivatives are

Dw Dk
Ft = oW E — V(xjw& -+ (KJ - v(:c,y))uJ_ — 20K

This comes from the quaternion formulation [Gibbon et al.(2006)] and (Gibbon,
private communication). Use

—DA X w =10 0
wWw = wWw = p—
Dt X Y X
Dk . -
EZ(XXL«J),S—OU{,:X’SXLU—I—XXK,—O&FL
D
F’:: (S® —aw); —ak =(Sw) s — a @ —2ak

Then apply the conditions of the symmetry plane.
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Calculation with two vortex filaments with finite cores
Assume two 3D vortex filaments that are mirrored across a dividing plane.

e w; =(0,0,—1), @2 =1(0,0,1) and wy = w1 = w W= ow

o [fxy = (x1,y1) = (x,y) then 3 = (29, y2) = (x, —y), T =u,

o If Ky = (Ky, Ky) then Ky = (K, —ky) K=V a+ (k- V,))u —2ak
e x can be neglected.

o Set y = d with z,, = —2d, x, =2d, r?=4d’

e Rosenhead regularization of core with thickness a. a=—%Fa
e Velocity due to vortex wo using a.
r [ z,b, rpNs r . e ~ T [x?+a’- T Ty
Uy = — +—krs5lo by——=x [ =2 by + n
. 27r<7“2+a2 Pra) A S\t a2 T a2
e This is used to calculate total velocity and V(, , w1 needed for K.
I'kn a’
e Total velocity iny , self-induced plus that towy :  u, = “lo
Yy Yy, P 2 Y S g 4d2/a2

e Stretching;: o L' 2Kz I' drdn,

T dnr2+a? Andd? + a2
o Curvature K= [V ya+ (k- V)u, ] +[(k-V)u, —20kK|

o stretching decay



V(xjy)()é + (k- V)u,, =

(k- V)ug, —2ak =
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27 (4d%+a?)
N

47 (4d>+-a?)
'x2d

27 (4d%+a?)
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Ty 4d?4a?’

24d?% —q?
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24d? —q?
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0 10 20 30 40

® {ime

-F-|l.!

O 10 20 30 40
time

QDO OO0
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Upper left and right: «, x and w, blowing up. o ~ 1/(T —1).
Lower left: d/a —~ .3. Lower right: n, —~ .9, n, —~ 4.



10000.01 « 0.06 |
1000.0 -~ o
100.0F o _ U047 N
. 1990 10w 0.02 | .5%T=% ™.
0.1k~ ~77 . 0.00 | 10F%- i,
33.61 33.64 33.67 33.61 33.64 33.67
time time
0.41d/d | 1.0 .-
0.3 o 0.8 Hy
e 0.6}
0.2 TUO*{H"-.__‘ 0A4AF n
0.1 1100xa 0.2t
0.0kb-=~- . 0.0 .
33.61 33.64 33.67 33.61 33.64 33.67
time time

Upper right: «a, uz, k*, a’,d* ~ 1/(T —t). Dotted lines are extentions to T =
33.658. Comparing v and a?, w = I'/a* ~ (.048/.003) /(T —t) ~ 16/(T — t). (labels
100a, 100a should be 100a?, 100d?)
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Conclusions

e Equation for analysis
e There is stretching and potential for singularities due to:
e Agreement with expectations for vortex filaments.

e Could be used for testing regularizations of filaments.
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