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0. Introduction

We are concerned on the incompressible fluid equations in R3:

( Ov
E—l—(v'V)’U——Vp

(E) < div v = 0,

_/\

\ v(x,0) = vo(x),

where v = (vi, v2,0?), v/ = vI(x,t), j = 1,2,3, is the fluid velocity,
and p = p(x,t) is the pressure(L. Euler, 1757).



e Local in time existence of classical solution: For vy € H™(R3),
m > 5/2 the classical solution exists uniquely at least for ‘small

time’(Kato, Temam, Brezis,... )

e An outstanding open question:

Is there any local classical solution which evolves into a

singularity in a finite time ?



e Beale-Kato-Majda’s Blow-up criterion(’84):

T
i sup o)) = o9 @/ lw(t)] o dt = oo,

where m > 5/2, and w =curl v is the vorticity.

e Refinements:

(Note the embeddings: L*°® — BMO — Bgojoo)

The integrand ||w(t)| L~ is replaced by

|w(t)|| Baro (Kozono-Taniuchi[’00]), and later by
lw®)l[ 50 (C.['01, '02]; Kozono-Ogawa-Taniuchi|'02];
Planchon [’03] )



e In this talk we are concerned on the possibility of self-similar

type of blow-ups of the Euler equations.

e The self-similar singularity is one of the most popular scenarios in
search of finite time singularity in nonlinear PDEs.
(e.g nonlinear Schrédinger equations, porous medium equation, ...)



2. Nonexistence of self-similar singularity

e The Euler system (E) has scaling property that if (v, p) is a

solution, then for any A > 0 and a € R the functions

vV (x,t) =

are also solutions with the initial data v

p’\’o‘(ac, t) = )\Qo‘p()\x, )\O‘+1t)

A,Q

A0z, A1),

() = A*v(Ax).

e In view of this it would be interesting to check if there exists any

nontrivial solution (v(z,t),p(x,t)) of the form(a # —1),

y

_/\

\

1 T
/U(xyt) _ (T* _t)a-|-1 V <(T* t)a_l|_1> 9
1 T
T ((T* t>a1+1>

. self-similar singular solution



e Substituting this into the Euler equation, we find that (V, P)

should be a solution of the system

o 1
V + V)V V-V)V=-VP
(SSE) a—+ 1 Oz—i—l(y ) +( )
div V =0,

which could be regarded as the Euler version of the Leray
equations:

11
—VA=(y- V)V +(V-V)V =-VP+AV
(Leray) ) 2 S VIV +(V-V)

div V =0,



e Nonexistence of the self-similar blowing up solutions (in L3(R?))
for the 3D Navier-Stokes equations was first proved by
Necas-Ruzicka -Sverdk ("96)

(extended to the case LP(R?),p > 3 by Tsai in "98)

e Use of the maximum principle was crucial in the above results for

the Navier-Stokes equations.

e To be more specific let us define a scalar function II and an
elliptic operator L respectively as

1 1
M= —-|V?+ P+ —qy-V

1
L:A—(V+§y)v



e If (V, P) is a solution of the Leray equations, then we have the
pointwise inequality,
L 11 > 0.

This provides us the desired maximum principle.

e In the derivation of the above inequality the existence of the

laplacian(dissipation) term in the Leray equations is essential.

e Since the laplacian term is absent in the self-similar Euler

equations, we cannot expect to have similar maximum principle.



e Therefore, we need different argument from Necas-RuZicka
-Sverdk’s or Tsai’s to exclude the self-similar singularity.

e Previous results for self-similar Euler system(SSE):

Theorem 1 (C. ’04) IfV € H'(R?) is a nontrivial(nonzero)
classical solution of (SSE) in R3 , then the helicity of V is equal to
zero, namely ng V - Qdx = 0, where Q) =curlV.
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Main Results:

e Given a smooth velocity field v(x,t), the particle trajectory map

a+— X (a,t) is defined by the solution of the ODE system,

8Xé§?’t):U(X(a,t),t) ;. X(a,0)=a€R".

Theorem 2 There exists no finite time blowing up self-similar

solution (v, p) to the 8D Euler equations represented by (V, P)
above under the following assumptions:

(i) Before singular time T, the smooth solution v generates a

particle trajectory map a — X (a,t), which is an C*(R? : R?)
diffeomorphism.

(i) The vorticity Q =curl V is nonzero, and there exists p1 > 0
such that the Q € LP(R3;R?) for all p € (0,p1).
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Remarks

e The condition (i), which is equivalent to the existence of the
‘back-to-label map’, A(-,t) = X ~1(-,t), is guaranteed by a decay
condition(regardless of its rate) for the velocity V(P. Constantin,

private communication,).

e For example, if Q € L] (R3;R?) and there exist constants R, K

and e1,e5 > 0 such that |Q(z)| < Ke 171" for |z| > R, then we
have Q € LP(R3;R?) for all p € (0,1).
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e In the zero vorticity case (2 = 0, since div V' =0 and curl V =0,
we have V = Vh, where h(x) is a harmonic function. Hence, we

have an easy example of self-similar blow-up,

v(zx,t) = ! th( ‘ 1>,
(Ty — t) o+t (T, — t)a+

in R3, which is also the case of the 3D Navier-Stokes(aw = 1). We

do not consider this case in the theorem.
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The previous theorem is a corollary of the following more general
theorem.

Theorem 3 Let v be a C([0,T); CH(R?)) solution to (E), which
satisfies the condition (i) of previous theorem. Suppose we have a

representation of the vorticity of the solution v to the 3D FEuler

equations by
w(x,t) = V()QD(t)x) vVt € [0,7)

where 2 = curl V' for some V', and there exists p1 > 0 such that
Q€ LP(R?) for all p € (0,p1). Then, necessarily either
det(®(t)) = det(®(0)) on [0,T), or Q2 =0.
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Proof of Theorem 2 from Theorem 3.

We apply Theorem 3 with
O(t) = (T, —t)" =TI, and V()= (T, —t)"",
where I is the unit matrix in R3*3. If o # —1 and ¢ # 0, then
det(D(t)) = (T, — 1)~ 727 £ To T = det(B(0)).

Hence, we conclude that €2 = 0. [J

15



Proof of Theorem 3.

e By consistency with the initial condition,
wo(z) = ¥(0)Q(P(0)x), and hence Q(z) = ¥(0) two([®(0)] tz).

e Using this fact, we can rewrite the representation of self-similar

solution in the form,
w(z,t) = Gt)wo(F(t)z) vVt € [0,7),

where G(t) = W(t)/W(0), F(t) = [®(0)] 1D (2).

e In order to prove the theorem it suffices to show that either
det(F(t)) =1 for all t € [0,T), or wg =0
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o We set A(x,t) := X !(x,t), which is the back-to-label map.
Taking curl of the first equation of (E), we obtain the vorticity

evolution equation,

Ow
E+(U°V)W—(M'V)’U.

e This, taking dot product with w, leads to

O|w| _
It + (v V)|w| = alw|,
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where a(x,t) is defined as

(3

Y Sijla, g, )8 () i w(a,t) #0
afz,t) = 4 i,j=1
\ 0 if w(x,t)=0
with
1 [0v ov; _ w(z,t)
s0=3 (5 ) me e = EEg
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e In terms of the particle trajectory mapping we can rewrite the

equation for |w(x,t) as

%|W(X(a,t),t)| = a(X(a,1),t)|w(X(a,1),1)].

e Integrating this along the particle trajectories { X (a,t)}, we have

w(X(a,t),t)| = |wo(a)] exp [/Otaé(X(au 3),3)d3] -
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e Taking into account the simple estimates
—[[Vo(, )|z < ala,t) < [[Vo(,t)|[p= Vo € R,

we obtain that
t
wo(a)]| exp [— / ||w<-,s>||Loods] < w(X(a,1),8)
0

< Jwo(a)| exp [ / | ||V’U('75)||Lood8] ,

which, using the back to label map, can be rewritten as

jwo(A(x,1))| exp [— /Ot ||VU('75)||L°°CZ3] < |w(z, 1)
< |wo(A(z,1))| exp [/Ot ||VU('75)||L°°CZ5] -
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e Combining this with the self-similar representation formula, we

have
jwo(A(z,t))] exp [—/O IIW(',S)IILoodS] < G(t)|wo(F(t)z)]

< oAz, )l exp | [ [90(.5)u=ds|.

e Given p € (0,p;), computing LP(R?) norm of the each side of (1),

we derive

Jwoll o exp [— / ||w<-,s>||mds] < G(O)ldet (F(1)] ¥ woll1r

t
< Jlwoll» exp [ / [V0(-, 5)l| e ds] |
0

where we used the fact det(VA(x,t)) = 1.
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e Now, suppose {2 # 0, which is equivalent to assuming that

wo # 0, then we divide the above inequalities by |

exp [— /Ot ||VU('73)||L°°CZ3] < G(t)|det(F(1))

wol|[L» to obtain

=

t
< exp [/ |Vou(-, 8)||p=ds| .
0

o If there exists t; € (0,T) such that det(F'(¢1)) # 1, then either

det(F(t1)) > 1 or det(F(t,)) < 1.

e In either case, setting ¢ = t; and passing p \ 0 in the above

inequalities, we deduce that

t1
/ IVo(- )|| e ds = oo,
0

e This contradicts with the assumption that the flow is smooth on

(0,7), i.e v e C([0,T); C*(R3; R3)). O
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Divergence-free transport equation

e The previous argument in the proof of main theorem can also be
applied to the following transport equations by a divergence-free
vector field in R™, n > 2.

(00
E + (’U : V)H — O,
() dive = 0,
| 02, 0) = bo(z),

where v = (vy, -+ ,v,) = v(z,t), and 0 = 0(z,1).
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e In view of the invariance of the transport equation under the

scaling transform,
v(z,t) — MYz, t) = Av(Ax, A1),
O(z,t) — 0P (z,t) = NO(Ax, \9T 1)

for all a, 3 € R and A > 0, the self-similar blowing up solution is of

the form,

1 X
ot ((T* t>a1+1> |

1 X
et = y® ((T* t)ai1>

for a # —1 and t sufficiently close to T.
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e We have following theorem.

Theorem 4 Suppose there exist « = —1, 8 € R and solution
(V,0) to the system (ST) with © € LP*(R™) N LP2(R™) for some
p1,p2 such that 0 < p1 < pa < o0o. Then, © = 0.

Corollary 1 There exist no self-similar blow-ups for the density
dependent Fuler equations, the 2D (inviscid) Boussinesq system,

and the 2D quasi-geostrophic equations under the appropriate
integrability conditions.
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e Similarly to the case of the Euler equations the above theorem is

a corollary of the following one.

Theorem 5 Suppose there exists T' > 0 such that there exists a
representation of the solution 0(x,t) to the system (T) by

O(z,t) = U(H)O(D(t)x) V< [0,T).

Assume there exist p1 < pe with p1,p2 € (0, 00| such that
O € LPr(R™) N LP2(R™). Then, necessarily either
det(®(t)) = det(®(0)) and ¥ (t) = ¥(0) on [0,T), or © = 0.
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e Density-dependent Euler equations in R™, n > 2.

(0
IPY L div (pv @ v) = —Vp,
ot
dp
div v =0,
\/U(:C:O) :/UO(:E)v /0(:670) :/00(:6)7
where v = (vy, -+ ,v,) = v(z,t) is the velocity, p = p(x,t) > 0 is

the scalar density of the fluid, and p = p(x,t) is the pressure.
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e The Boussinesq system in R?.

( Ov
E+(U'V)U:—vp+9€1,
00
E#‘(U’V)Q—O,

div v =0,
| v(x,0) = vo(w), 0(x,0) = 0g(x)

_/\

where v = (v1,v2) = v(z,t) is the velocity, e; = (1,0), and
p = p(x,t) is the pressure, while § = 0(x,t) is the temperature

function.
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e The 2D quasi-geostrophic equation

(00
E#‘(U’V)Q—O,

(QE)Y v = —vi(-a) 20 (: VL/R

29

0(y,1)
2 |z — 9|

dy) :



3. Nonexistence of ‘asymptotically’

self-similar singularity

e We now consider the possibility of ‘asymptotic’ evolution of the
local smooth solution toward a self-similar singularity as ¢t — T'(the

possible singular time).

Theorem 6 Let v € C([0,T); BY, 1(R?)) be a classical solution to
the 3D Euler equations. Suppose there exist p1 > 0, a > —1,
V e CY(R3) such that Q =curl V € LI(R?) for all ¢ € (0,p1), and

1 _ :
uJ("’S)T—’fg<<Tt>al+l>

Then, Q =0, and v € C([0,T 4 0); BL, 1(R?)) for some § > 0.

= 0.
B

im (T —
Jim (T = 1)
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e The proof uses the following continuation principle for local

solution.

Proposition 1 Let v € C([0,T); B, 1 (R?)) be a classical solution
to the 3D FEuler equations. There exists an absolute constant n > 0
such that if

inf (T — ~
oot (T = t)llw®)llgo , <

then, v € C([0,T 4 6); BL, 1 (R?)) for some § > 0.

e The proof of this proposition is a slight variation of local a priori
estimate in the Besov space.

31



Outline of the Proof:

e We change from physical variables (z,t) € R3 x [0,T) into
‘self-similar variable’ (y,s) € R? x [0, 00) as follows:

T Qo o T
: ’ S: - .
T at+1 8\ T ¢

e Based on this change of variables, we transform (v, p) — (V, P)

according to

1 1
’U(:C,t) — (T—t)%ﬂ‘/(y’ 5)7 p(iC,t) — (T_t)o?—flp(y’ 5)'
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e Substituting (v, p) into the Euler system we obtain the

( « Q 1

V. V
o+ 1 S+Oz+1 +oz+1

(E1)§ divV =0,

(y - VIV +(V-V)V =-VP,

LV (Y,0) = VW(y) = TO‘L“’UO(T‘D‘L“Q)-

e In terms of V' our convergence condition is translated into

lim (-, 5) = () o, =0,

S§— 0O

where we set {2 = curl V.
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e From this we show easily that V is a stationary solution of (E1).
e Using the previous nonexistence result we have ) = 0.

e Hence the convergence hypothesis of the theorem reduces to

limy (T — 1) (-, 1) g, = 0.

e Applying our continuation principle, we can continue our local

solution beyond T'. []
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4. Nonexistence of asymptotically
self-similar solutions for the 3D

Navier-Stokes equations

Here we are concerned on the following 3D Navier-Stokes equations.

¢ Ov 3
o T (0 Vo =-Vp+Av, (2,t) €R® x (0,00)

(NS)q div v =0, (2,t) €R3x (0,00)

| v(x,0) = vo(z), =€R’
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Theorem 7 Letp € [3,00), and v € C([0,T); LP(R?)) be a classical
solution to (NS). Suppose there exists V € LP(R?) such that

1 :
0et) = eV ()
T —t T —t
Then, V =0, and v € C([0,T + §); LP(R?)) for some § > 0.

lim (T —t) %
t T

= 0.
LP

e Hou and Li obtained previously this result for p € (3, 00) in ’06,
and the proof can be substantially simplified if we use the following

continuation principle.
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Proposition 2 Let p € [3,00), and v € C([0,T); LP(R?)) be a
classical solution to (NS). There exists a constant n > 0 depending
on p such that if

p—3
inf (T —t)% |[o(t)|| s
ook (T =) 2 [lo(®)l|le <.

then, v € C([0,T + 6); LP(R?)) for some & > 0.

e For p = 3 this reduces to the small data global regularity result in
L3(R?) due to Kato(’84)
e For p > 3 proof is immediate from Leray’s result(’34) on the

blow-up rate estimate,

C
lo@)llzr 2 =5

(T =) =

where T, is the assumed first blow-up time.
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Localization

e We denote B(z,7) = {x € R®||x — 2| < r} below.

Theorem 8 Let p € [3,00), and v € C([0,T); LP(R?)) be a
classical solution to (NS). Suppose either one of the followings hold.

(i) Let q € [3,00). Suppose there exists V € LP(R3) and
R € (0,00) such that we have
q—3

lim (7' —t) 2« sup
t/T( ) t<T<T

=0
Li(B(z,RVT—t))

om) = = <¢T_7—zfr>

(ii) Let q € [2,3). Suppose there exists V € LP(R3) such that the
above holds for all R € (0, 00).

Then, V=0, and (z,T) is the reqular point of v(x,1t).
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e We note that, in contrast to Theorem 7, besides the localization
in space the range of ¢ € [2,3) is also allowed for the possible
convergence of the local classical solution to the self-similar profile.

e For the proof we use the following regularity criterion for the
(NS) due to Gustafson-Kang-Tsai(’06):

Theorem 9 Let q € (3/2,00). Suppose v is a suitable weak
solution of (NS) in a cylinder, Q = B(z,r1) x (t —r%,T) in the
sense of Caffarelli-Kohn-Nirenberg. Then, there exists a constant
n =n(q) > such that if

q—3

lim sup {rTess sup ||’U(',’7')||LQ(B(Z,T))} <,
N0 t—r2<r<t

then (z,T) is the reqular point of v(x,t).
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