Quaternions and particle dynamics in the Euler fluid equations

J. D. Gibbon

Mathematics Department Imperial College London, London SW7 2AZ

j.d.gibbon@imperial.ac.uk

Maryland CSCAMM Meeting; October 23-27, 2006

Collaborators

JDG & Darryl Holm 06: http://arxiv.org/abs/nlin.CD/0607020
JDG, Holm, Kerr & Roulstone: Nonlinearity 19, 1969-83, 2006
JDG, Physica D, 166, 17-28, 2002.
Galanti, JDG & Heritage; Nonlinearity 10, 1675, 1997.
Galanti, JDG & Kerr, in *Turbulence structure & vortex dynamics*, (pp 23-34, eds: Hunt & Vassilicos, CUP 2000).

Summary of this talk

Question: Do the Euler equations possess some subtle geometric structure that guides the direction of vorticity – see Peter Constantin, *Geometric statistics in turbulence*, SIAM Reviews, **36**, 73–98.

- 1. Quaternions: what are they?
- 2. Lagrangian particle dynamics: We find explicit equations for the Lagrangian derivatives of an ortho-normal co-ordinate system at each point in space. (JDG/Holm 06)
- 3. For the 3D-Euler equations; Ertel's Theorem shows how Euler fits naturally into this framework (JDG, Holm, Kerr & Roulstone 2006).
- 4. Review of work on the direction of Euler vorticity, particularly that of Constantin, Fefferman & Majda 1996; Deng, Hou & Yu 2005/6 & Chae 2006.
- 5. A different direction of vorticity result involving the pressure Hessian.

Lord Kelvin (William Thompson) once said:

Quaternions came from Hamilton after his best work had been done, & though beautifully ingenious, they have been an unmixed evil to those who have touched them in any way.

O'Connor, J. J. & Robertson, E. F. 1998 Sir William Rowan Hamilton,

http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Hamilton.html

Kelvin was wrong because quaternions are now used in the computer animation, avionics & robotics industries to track objects undergoing sequences of tumbling rotations.

- Visualizing quaternions, by Andrew J. Hanson, MK-Elsevier, 2006.
- Quaternions & rotation Sequences: a Primer with Applications to Orbits, Aerospace & Virtual Reality, J. B. Kuipers, Princeton University Press, 1999.

What are quaternions? (Hamilton (1843))

Quaternions are constructed from a scalar p & a 3-vector \boldsymbol{q} by forming the tetrad

$$oldsymbol{p} = [p, \, oldsymbol{q}] = pI - oldsymbol{q} \cdot oldsymbol{\sigma} = \sum_{i=1}^{3} q_i \, \sigma_i$$

based on the Pauli spin matrices that obey the relations $\sigma_i \sigma_j = -\delta_{ij} - \epsilon_{ijk} \sigma_k$

$$\sigma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

Thus quaternions obey the multiplication rule

$$\mathfrak{p}_1 \circledast \mathfrak{p}_2 = [p_1 p_2 - \boldsymbol{q}_1 \cdot \boldsymbol{q}_2, p_1 \boldsymbol{q}_2 + p_2 \boldsymbol{q}_1 + \boldsymbol{q}_1 \times \boldsymbol{q}_2]$$
.

They are associative but obviously non-commutative.

Quaternions, Rotations and Cayley-Klein parameters

Let $\hat{\mathfrak{p}} = [p, q]$ be a unit quaternion with inverse $\hat{\mathfrak{p}}^* = [p, -q]$ with $p^2 + q^2 = 1$, which guarantees $\hat{\mathfrak{p}} \circledast \hat{\mathfrak{p}}^* = [1, 0]$. For a pure quaternion $\mathfrak{r} = [0, r]$ there exists a transformation $\mathfrak{r} \to \mathfrak{r}'$

$$\mathbf{r}' = \hat{\mathbf{p}} \circledast \mathbf{r} \circledast \hat{\mathbf{p}}^* = [0, (p^2 - q^2)\mathbf{r} + 2p(\mathbf{q} \times \mathbf{r}) + 2\mathbf{q}(\mathbf{r} \cdot \mathbf{q})].$$

Now choose $p = \pm \cos \frac{1}{2} \theta$ and $q = \pm \hat{n} \sin \frac{1}{2} \theta$, where \hat{n} is the unit normal to r

$$\mathbf{r}' = \hat{\mathbf{p}} \circledast \mathbf{r} \circledast \hat{\mathbf{p}}^* = [0, \, \mathbf{r} \cos \theta + (\hat{\mathbf{n}} \times \mathbf{r}) \sin \theta] \,,$$

where

$$\hat{\mathbf{p}} = \pm \left[\cos \frac{1}{2}\theta, \, \hat{\boldsymbol{n}} \sin \frac{1}{2}\theta\right].$$

This represents a rotation by an angle θ of the 3-vector r about its normal \hat{n} . **The elements of the unit quaternion** \hat{p} **are the Cayley-Klein parameters** from which the Euler angles can be calculated. All terms are quadratic in p and q, and thus allow a double covering (\pm) (see Whittaker 1945).

General Lagrangian evolution equations

Consider the general Lagrangian evolution equation for a 3-vector $oldsymbol{w}$ such that

$$\frac{D\boldsymbol{w}}{Dt} = \boldsymbol{a}(\boldsymbol{x}, t) \qquad \qquad \frac{D}{Dt} = \frac{\partial}{\partial t} + \boldsymbol{u} \cdot \nabla$$

transported by a velocity field $oldsymbol{u}$. Define the scalar $lpha_a$ the 3-vector $oldsymbol{\chi}_a$ as

$$\alpha_a = |\boldsymbol{w}|^{-1}(\hat{\boldsymbol{w}} \cdot \boldsymbol{a}), \qquad \boldsymbol{\chi}_a = |\boldsymbol{w}|^{-1}(\hat{\boldsymbol{w}} \times \boldsymbol{a}).$$

for $|{m w}|
eq 0$. Via the decomposition ${m a} = lpha_a {m w} + {m \chi}_a imes {m w}$, $|{m w}|$ & $\hat{{m w}}$ satisfy

$$\frac{D|\boldsymbol{w}|}{Dt} = \alpha_a |\boldsymbol{w}|, \qquad \frac{D\hat{\boldsymbol{w}}}{Dt} = \boldsymbol{\chi}_a \times \hat{\boldsymbol{w}}.$$

 $lpha_a$ is the growth rate (Constantin 1994) & χ_a is the 'swing' rate. The 'tetrads'

$$\mathbf{q}_a = \left[lpha_a, \, oldsymbol{\chi}_a
ight], \qquad \qquad \mathbf{\mathfrak{w}} = \left[0, \, oldsymbol{w}
ight].$$

allow us to write this as

$$\frac{D\mathfrak{w}}{Dt} = \mathfrak{q}_a \circledast \mathfrak{w} .$$

Theorem: (JDG/Holm 06) If a is differentiable in the Lagrangian sense s.t.

$$\frac{D\boldsymbol{a}}{Dt} = \boldsymbol{b}(\boldsymbol{x},\,t)\,,$$

(i) For for $|\boldsymbol{w}| \neq 0$, q_a and q_b satisfy the Ricatti equation

$$\frac{D\mathfrak{q}_a}{Dt} + \mathfrak{q}_a \circledast \mathfrak{q}_a = \mathfrak{q}_b;$$

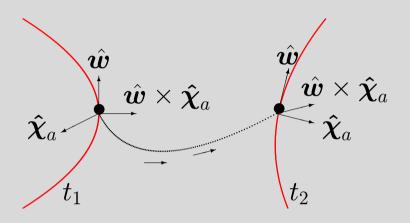
(ii) At each point \boldsymbol{x} there exists an ortho-normal frame $(\hat{\boldsymbol{w}}, \hat{\boldsymbol{\chi}}_a, \hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_a) \in SO(3)$ whose Lagrangian time derivative is expressed as

$$egin{aligned} &rac{D\hat{oldsymbol{w}}}{Dt} \,=\, oldsymbol{\mathcal{D}}_{ab} imes \hat{oldsymbol{w}}\,, \ &rac{D(\hat{oldsymbol{w}} imes \hat{oldsymbol{\chi}}_{a})}{Dt} \,=\, oldsymbol{\mathcal{D}}_{ab} imes (\hat{oldsymbol{w}} imes \hat{oldsymbol{\chi}}_{a})\,, \ &rac{D\hat{oldsymbol{\chi}}_{a}}{Dt} \,=\, oldsymbol{\mathcal{D}}_{ab} imes (\hat{oldsymbol{w}} imes \hat{oldsymbol{\chi}}_{a})\,, \end{aligned}$$

where the Darboux angular velocity vector \mathcal{D}_{ab} is defined as

$$oldsymbol{\mathcal{D}}_{ab} = oldsymbol{\chi}_a + rac{c_1}{\chi_a} \hat{oldsymbol{w}} \,, \qquad c_1 = \hat{oldsymbol{w}} \cdot (\hat{oldsymbol{\chi}}_a imes oldsymbol{\chi}_b) \,.$$

Lagrangian frame dynamics: tracking a particle



The dotted line represents a particle (•) trajectory moving from (\boldsymbol{x}_1, t_1) to (\boldsymbol{x}_2, t_2) . The orientation of the orthonormal unit vectors

$$\{\hat{oldsymbol{w}},\ \hat{oldsymbol{\chi}}_a,\ (\hat{oldsymbol{w}} imes\hat{oldsymbol{\chi}}_a)\}$$

is driven by the Darboux vector $\mathcal{D}_{ab} = \chi_a + \frac{c_1}{\chi_a} \hat{\boldsymbol{w}}$ where $c_1 = \hat{\boldsymbol{w}} \cdot (\hat{\boldsymbol{\chi}}_a \times \boldsymbol{\chi}_b)$. Thus we need the 'quartet' of vectors to make this process work

 $\{oldsymbol{u},\,oldsymbol{w},\,oldsymbol{a},\,oldsymbol{b}\}$.

Proof: (i) It is clear that (with $q_b = [\alpha_b, \chi_b]$)

$$rac{D^2 oldsymbol{\mathfrak{w}}}{Dt^2} = [0, \ oldsymbol{b}] = oldsymbol{\mathfrak{q}}_b \circledast oldsymbol{\mathfrak{w}} \; .$$

Compatibility between this and the q-equation means that

$$\left(\frac{D\mathfrak{q}_a}{Dt} + \mathfrak{q}_a \circledast \mathfrak{q}_a - \mathfrak{q}_b\right) \circledast \mathfrak{w} = 0\,,$$

(ii) Now consider the ortho-normal frame $(\hat{\boldsymbol{w}}, \hat{\boldsymbol{\chi}}_a, \hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_a)$ as in the Figure below.

The evolution of $oldsymbol{\chi}_a$ comes from

$$\hat{w}$$
 a
 $\hat{w} \times \hat{\chi}_a$
 b
 $\hat{\chi}_a$

$$\frac{D\mathfrak{q}_a}{Dt} + \mathfrak{q}_a \circledast \mathfrak{q}_a = \mathfrak{q}_b \,,$$

and gives

$$rac{Doldsymbol{\chi}_a}{Dt} = -2lpha_aoldsymbol{\chi}_a + oldsymbol{\chi}_b\,.$$

 $m{b}$ can be expressed in this ortho-normal frame as the linear combination

$$egin{aligned} oldsymbol{b} &= egin{aligned} oldsymbol{w} &= egin{aligned} oldsymbol{w}_b &= c_1 (oldsymbol{\hat{w}} imes oldsymbol{\hat{\chi}}_a) + c_2 (oldsymbol{\hat{w}} imes oldsymbol{\hat{\chi}}_a)) \ oldsymbol{\chi}_b &= c_1 (oldsymbol{\hat{w}} imes oldsymbol{\hat{\chi}}_a) - c_2 oldsymbol{\hat{\chi}}_a \,, \end{aligned}$$

where $c_1 = \hat{\boldsymbol{w}} \cdot (\hat{\boldsymbol{\chi}}_a \times \boldsymbol{\chi}_b)$ and $c_2 = -(\hat{\boldsymbol{\chi}}_a \cdot \boldsymbol{\chi}_b)$. From the Ricatti equation for the tetrad $\boldsymbol{\mathfrak{q}}_a = [\alpha_a, \, \boldsymbol{\chi}_a]$ (where $\boldsymbol{\chi}_a = |\boldsymbol{\chi}_a|$)

$$\frac{D\boldsymbol{\chi}_a}{Dt} = -2\alpha_a \boldsymbol{\chi}_a + \boldsymbol{\chi}_b, \quad \Rightarrow \quad \frac{D\chi_a}{Dt} = -2\alpha_a \chi_a - c_2,$$

There follows

$$\frac{D\hat{\boldsymbol{\chi}}_a}{Dt} = c_1 \chi_a^{-1} (\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_a), \qquad \frac{D(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_a)}{Dt} = \chi_a \, \hat{\boldsymbol{w}} - c_1 \chi_a^{-1} \hat{\boldsymbol{\chi}}_a,$$

which, together with

$$rac{D\hat{oldsymbol{w}}_a}{Dt} = oldsymbol{\chi}_a imes \hat{oldsymbol{w}} \,,$$

can be re-expressed in terms of the Darboux vector $m{\mathcal{D}}_a = m{\chi}_a + rac{c_1}{\chi_a} \hat{m{w}}.$

J. D. Gibbon, CSCAMM; October 2006

Ertel's Theorem & the 3D Euler equations

$$\frac{D\boldsymbol{\omega}}{Dt} = \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} = S\boldsymbol{\omega} \qquad \text{Euler in vorticity format}$$

<u>Theorem</u>: (Ertel 1942) If $\boldsymbol{\omega}$ satisfies the 3D incompressible Euler equations then any arbitrary differentiable μ satisfies

$$\frac{D}{Dt}(\boldsymbol{\omega}\cdot\nabla\mu) = \boldsymbol{\omega}\cdot\nabla\left(\frac{D\mu}{Dt}\right) \quad \Longrightarrow \quad \left[\frac{D}{Dt},\,\boldsymbol{\omega}\cdot\nabla\right] = 0\,.$$

<u>Proof</u>: Consider $\boldsymbol{\omega} \cdot \nabla \mu \equiv \omega_i \, \mu_{,i}$

$$\frac{\partial}{\partial t}(\omega_{i} \,\mu_{,i}) = \frac{D\omega_{i}}{Dt}\mu_{,i} + \omega_{i} \left\{ \frac{\partial}{\partial x_{i}} \left(\frac{D\mu}{Dt} \right) - u_{k,i}\mu_{,k} \right\} \\
= \underbrace{\{\omega_{j}u_{i,j} \,\mu_{,i} - \omega_{i}u_{k,i} \,\mu_{,k}\}}_{\text{zero under summation}} + \omega_{i} \frac{\partial}{\partial x_{i}} \left(\frac{D\mu}{Dt} \right)$$

In characteristic (Lie-derivative) form, $\boldsymbol{\omega} \cdot \frac{\partial}{\partial \boldsymbol{x}}(t) = \boldsymbol{\omega} \cdot \frac{\partial}{\partial \boldsymbol{x}}(0)$ is a Lagrangian invariant (Cauchy 1859) and is "frozen in".

Various references

- Ertel; Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59, 271-281, (1942).
- Truesdell & Toupin, Classical Field Theories, *Encyclopaedia of Physics III/1*, ed. S. Flugge, Springer (1960).
- Ohkitani; Phys. Fluids, A5, 2576, (1993).
- Kuznetsov & Zakharov; *Hamiltonian formalism for nonlinear waves*, Physics Uspekhi, **40** (11), 1087–1116 (1997).
- Bauer's thesis 2000 (ETH-Berlin); *Gradient entropy vorticity, potential vortic-ity and its history.*
- Viudez; On the relation between Beltrami's material vorticity and Rossby-Ertel's Potential, J. Atmos. Sci. (2001).

Ohkitani's result & the pressure Hessian

Define the Hessian matrix of the pressure

$$P = \{p_{,ij}\} = \left\{\frac{\partial^2 p}{\partial x_i \,\partial x_j}\right\}$$

then Ohkitani took $\mu = u_i$ (Phys. Fluids, **A5**, 2576, 1993).

<u>**Result</u></u>: The vortex stretching vector \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} = S \boldsymbol{\omega} obeys</u>**

$$\frac{D(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})}{Dt} = \frac{D(S\boldsymbol{\omega})}{Dt} = \boldsymbol{\omega} \cdot \nabla \left(\frac{D\boldsymbol{u}}{Dt}\right) = -P \boldsymbol{\omega}$$

Thus for Euler, via Ertel's Theorem, we have the identification:

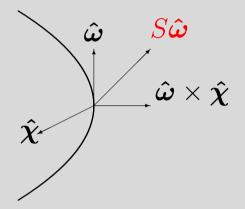
$$oldsymbol{w} \equiv oldsymbol{\omega} \qquad oldsymbol{a} \equiv oldsymbol{\omega} \cdot
abla oldsymbol{u} = Soldsymbol{\omega} \qquad oldsymbol{b} \equiv -Poldsymbol{\omega}$$

with a quartet

$$(\boldsymbol{u},\,\boldsymbol{w},\,\boldsymbol{a},\,\boldsymbol{b})\equiv(\boldsymbol{u},\,\boldsymbol{\omega},\,S\boldsymbol{\omega},\,-P\boldsymbol{\omega})\,.$$

J. D. Gibbon, CSCAMM; October 2006

Euler: the variables $\alpha({m x},t)$ and ${m \chi}({m x},t)$



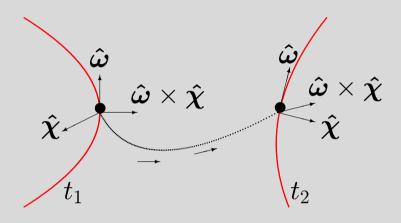
$$S\hat{\boldsymbol{\omega}} = \alpha\,\hat{\boldsymbol{\omega}} + \boldsymbol{\chi} \times \hat{\boldsymbol{\omega}}$$

See JDG, Holm, Kerr & Roulstone 2006.

$$\begin{array}{ll} (\alpha_a) & \boldsymbol{\alpha} = \boldsymbol{\hat{\omega}} \cdot S \boldsymbol{\hat{\omega}} & \boldsymbol{\chi} = \boldsymbol{\hat{\omega}} \times S \boldsymbol{\hat{\omega}} & (\boldsymbol{\chi}_a) \\ (-\alpha_b) & \boldsymbol{\alpha}_p = \boldsymbol{\hat{\omega}} \cdot P \boldsymbol{\hat{\omega}} & \boldsymbol{\chi}_p = \boldsymbol{\hat{\omega}} \times P \boldsymbol{\hat{\omega}} & (-\boldsymbol{\chi}_b) \\ & \boldsymbol{\mathfrak{q}} = [\alpha, \, \boldsymbol{\chi}] & \boldsymbol{\mathfrak{q}}_b = -\boldsymbol{\mathfrak{q}}_p = -[\alpha_p, \, \boldsymbol{\chi}_p] \\ & \boxed{\frac{D\boldsymbol{\mathfrak{q}}}{Dt} + \boldsymbol{\mathfrak{q}} \circledast \boldsymbol{\mathfrak{q}} + \boldsymbol{\mathfrak{q}}_p = 0}, \end{array}$$

constrained by $TrP = \Delta p = -u_{i,j}u_{j,i} = \frac{1}{2}\omega^2 - TrS^2$.

Lagrangian frame dynamics: tracking an Euler fluid particle



The dotted line represents the fluid packet (•) trajectory moving from (\boldsymbol{x}_1, t_1) to (\boldsymbol{x}_2, t_2) . The orientation of the orthonormal unit vectors

$$\{ \hat{oldsymbol{\omega}}, \ \hat{oldsymbol{\chi}}, \ (\hat{oldsymbol{\omega}} imes \hat{oldsymbol{\chi}}) \}$$

is driven by the Darboux vector

$$oldsymbol{\mathcal{D}} = oldsymbol{\chi} + rac{c_1}{\chi} oldsymbol{\hat{\omega}} \,, \qquad \quad c_1 = - oldsymbol{\hat{\omega}} \cdot (oldsymbol{\hat{\chi}} imes oldsymbol{\chi}_p) \,.$$

Thus the pressure Hessian within c_1 drives the Darboux vector $\boldsymbol{\mathcal{D}}$.

J. D. Gibbon, CSCAMM; October 2006

The α and $\boldsymbol{\chi}$ equations

In terms of α and $\boldsymbol{\chi}$, the Ricatti equation for \mathfrak{q}

$$\frac{D\mathfrak{q}_a}{Dt} + \mathfrak{q}_a \circledast \mathfrak{q}_a = \mathfrak{q}_b;$$

becomes

$$rac{Dlpha}{Dt} = \chi^2 - lpha^2 - lpha_p, \qquad rac{Doldsymbol{\chi}}{Dt} = -2lphaoldsymbol{\chi} - oldsymbol{\chi}_p.$$

(Galanti, JDG & Heritage; Nonlinearity 10, 1675, 1997). Stationary values are

$$lpha = \gamma_0 \,, \qquad oldsymbol{\chi} = oldsymbol{o} \,, \qquad lpha_p = -\gamma_0^2$$

which correspond to **Burgers'-like vortices**.

When tubes & sheets bend & tangle then $\chi \neq 0$ and q becomes a full tetrad driven by q_p which is coupled back through the elliptic pressure condition.

Note: Off-diagonal elements of P change rapidly near intense vortical regions across which χ_p and α_p change rapidly.

Phase plane

On Lagrangian trajectories, the $lpha-oldsymbol{\chi}$ equations become

$$rac{\partial lpha}{\partial t} = \chi^2 - lpha^2 - lpha_p \,, \qquad \qquad rac{\partial \chi}{\partial t} = -2lpha \chi + C_p \,.$$

where $C_p = - \hat{oldsymbol{\chi}} \cdot oldsymbol{\chi}_p$.

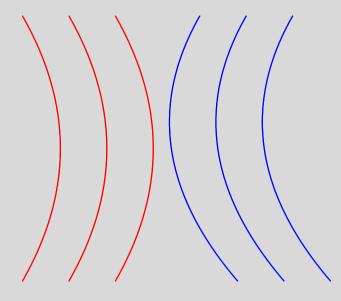
In regions of the $\alpha - \chi$ phase plane where $\alpha_p = const$, $C_p = const$ there are 2 critical points:

$$(\alpha, \chi) = (\pm \alpha_0, \chi_0)$$
 $2\alpha_0^2 = \alpha_p + [\alpha_p^2 + C_p^2]^{1/2}$

- The critical point in the LH-half-plane $(-\alpha_0, \chi_0)$ is an unstable spiral;
- The critical point in the RH-half-plane is (α_0, χ_0) is a stable spiral.

The next few slides: remarks on the "direction of vorticity" in Euler

1. The BKM theorem



- 2. The work of Constantin, Fefferman & Majda 1996 and Constantin 1994
 - The work of Deng, Hou & Yu 2005/6
 - \bullet Can our quaternionic Ricatti equation give anything in terms of P?

The Beale-Kato-Majda Theorem (CMP 94, 61-6, 1984)

Theorem: There exists a global solution of the Euler equations $\boldsymbol{u} \in C([0, \infty]; H^s) \cap C^1([0, \infty]; H^{s-1})$ for $s \ge 3$ if, for every $t^* > 0$, $\int_0^{t^*} \|\boldsymbol{\omega}(\tau)\|_{L^\infty(\Omega)} d\tau < \infty.$

The proof is based on $\|\nabla \boldsymbol{u}\|_{\infty} \leq c \|\boldsymbol{\omega}\|_{\infty} [1 + \log H_3].$

Thus one needs to numerically monitor only $\int_0^{t^*} \| \boldsymbol{\omega}(\tau) \|_{\infty} d\tau$.

<u>Corollary</u>: If a singularity is observed in a numerical experiment of the form $\|\boldsymbol{\omega}\|_{\infty} \sim (t^* - t)^{-\beta}$ then β must lie in the range $\beta \geq 1$ for the singularity to be genuine & not an artefact of the numerical calculation.

Constantin, Fefferman & Majda; Comm PDEs, 21, 559-571, 1996 The image W_t of a set W_0 is given by $W_t = X(t, W_0)$. W_0 is said to be smoothly directed if there exists a length $\rho > 0$ and a ball $0 < r < \frac{1}{2}\rho$ such that: 1. $\hat{\omega}(\cdot, t)$ has a Lipschitz extn to the ball of radius 4ρ centred at X(q, t) &

 $M = \lim_{t \to T} \sup_{\boldsymbol{q} \in \boldsymbol{W}_0^*} \int_0^t \|\nabla \hat{\boldsymbol{\omega}}(\cdot, t)\|_{L^{\infty}(B_{4\rho})}^2 dt < \infty.$

i.e. the direction of vorticity is well-behaved in the nbhd of a set of trajectories.

2. The condition $\sup_{B_{3r}(W_t)} |\boldsymbol{\omega}(\boldsymbol{x}, t)| \leq m \sup_{B_r(W_t)} |\boldsymbol{\omega}(\boldsymbol{x}, t)|$ holds for all $t \in [0, T)$ with m = const > 0; i.e. this nbhd captures large & growing vorticity but not so that it overlaps with another similar region & $\sup_{B_{4r}(W_t)} |\boldsymbol{u}(\boldsymbol{x}, t)| \leq U(t) := \sup_{\boldsymbol{x}} |\boldsymbol{u}(\boldsymbol{x}, t)| < \infty$ (Cordoba & Fefferman 2001; for tubes).

Theorem: (CFM 1996) Assume that W_0 is smoothly directed as in (i)–(ii). Then \exists a time $\tau > 0$ & a constant Γ s.t. for any $0 \le t_0 < T$ and $0 \le t - t_0 \le \tau$

$$\sup_{B_r(\boldsymbol{W}_t)} |\boldsymbol{\omega}(\boldsymbol{x},\,t)| \leq \Gamma \sup_{B_\rho(\boldsymbol{W}_t)} |\boldsymbol{\omega}(\boldsymbol{x},\,t_0)|\,.$$

The work of Deng, Hou & Yu; Comm PDEs, **31**, 293–306, 2006

Consider a family of vortex line segments L_t in a region of max-vorticity. Denote by L(t) the arc length of L_t , \hat{n} the unit normal & κ the curvature. DHY define

$$U_{\hat{\omega}}(t) \equiv \max_{\boldsymbol{x}, \boldsymbol{y} \in L_t} \left| (\boldsymbol{u} \cdot \hat{\boldsymbol{\omega}}) \left(\boldsymbol{x}, t \right) - \left(\boldsymbol{u} \cdot \hat{\boldsymbol{\omega}} \right) \left(\boldsymbol{y}, t \right) \right|,$$

 $U_n(t) \equiv \max_{L_t} | \boldsymbol{u} \cdot \hat{\boldsymbol{n}} |$, and $M(t) \equiv \max \left(\| \nabla \cdot \hat{\boldsymbol{\omega}} \|_{L^{\infty}(L_t)}, \| \kappa \|_{L^{\infty}(L_t)} \right).$

Theorem: (Deng, Hou & Yu 06): Let $A, B \in (0, 1)$ with B = 1 - A, and C_0 be a positive constant. If

1. $U_{\hat{\omega}}(t) + U_n(t) \leq (T - t)^{-A}$, 2. $M(t)L(t) \leq C_0$, 3. $L(t) \gtrsim (T - t)^B$,

then there will be no blow-up up to time T.

Also J. Deng, T. Y. Hou & X. Yu; Comm. PDEs, 30, 225-243, 2005.

Using the pressure Hessian

(see also Chae: $\int_0^T \|S\hat{\boldsymbol{\omega}} \cdot P\hat{\boldsymbol{\omega}}\|_{\infty} d\tau < \infty$; Comm. P&A-M., **109**, 1–21, 2006).

Theorem: (JDG, Holm, Kerr & Roulstone 06): \exists a global solution of the Euler equations, $\boldsymbol{u} \in C([0, \infty]; H^s) \cap C^1([0, \infty]; H^{s-1})$ for $s \geq 3$ if $\int_0^T \|\boldsymbol{\chi}_p\|_{L^\infty(\mathbb{D})} d\tau < \infty,$

with the exception of when $\hat{\omega}$ becomes collinear with an e-vec of P at t = T. **Proof:** With $|S\hat{w}|^2 = \alpha^2 + \chi^2$,

$$rac{D|S\hat{oldsymbol{w}}|}{Dt} \leq -lpha|S\hat{oldsymbol{w}}| + rac{|lpha||lpha_p| + |oldsymbol{\chi}||oldsymbol{\chi}_p|}{(lpha^2 + oldsymbol{\chi}^2)^{1/2}}\,.$$

Because $D|\boldsymbol{\omega}|/Dt = \alpha|\boldsymbol{\omega}|$, our concern is with $\alpha \geq 0$

$$rac{D|S\hat{oldsymbol{w}}|}{Dt} \leq |lpha_p| + |oldsymbol{\chi}_p| \,.$$

Possible that $|P\hat{\boldsymbol{\omega}}|$ blows up simultaneously as the angle between $\hat{\boldsymbol{\omega}}$ and $P\hat{\boldsymbol{\omega}} \to 0$ thus keeping $\boldsymbol{\chi}_p$ finite; i.e. $\int_0^t \|\boldsymbol{\chi}_p\|_{L^{\infty}(\mathbb{D})} d\tau < \infty$ but $\int_0^t \|\alpha_p\|_{L^{\infty}(\mathbb{D})} d\tau \to \infty$.

Frame dynamics & the Frenet-Serret equations

With \hat{w} as the unit tangent vector, $\hat{\chi}$ as the unit bi-normal and $\hat{w} \times \hat{\chi}$ as the unit principal normal, the matrix N can be formed

$$N = \left(\hat{\boldsymbol{w}}^T, \, (\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}})^T, \, \hat{\boldsymbol{\chi}}^T \right) \,,$$

with

$$\frac{DN}{Dt} = GN, \qquad G = \begin{pmatrix} 0 & -\chi_a & 0\\ \chi_a & 0 & -c_1\chi_a^{-1}\\ 0 & c_1\chi_a^{-1} & 0 \end{pmatrix}$$

The Frenet-Serret equations for a space-curve are

$$\frac{dN}{ds} = FN \qquad \text{where} \qquad F = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix},$$

where κ is the curvature and τ is the torsion.

The arc-length derivative d/ds is defined by

$$rac{d}{ds} = \hat{oldsymbol{\omega}} \cdot
abla \,.$$

The evolution of the curvature κ and torsion τ may be obtained from Ertel's theorem expressed as the commutation of operators $\left[\frac{D}{Dt}, \boldsymbol{\omega} \cdot \nabla\right] = 0$

$$\alpha_a \frac{d}{ds} + \left[\frac{D}{Dt}, \, \frac{d}{ds}\right] = 0$$

This commutation relation immediately gives

$$\alpha_a F + \frac{DF}{Dt} = \frac{dG}{ds} + [G, F].$$

Thus Ertel's Theorem gives explicit evolution equations for the curvature κ and torsion τ that lie within the matrix F and relates them to c_1 , χ_a and α_a .

Mixing

Consider a passive vector line-element $\delta \ell$ in a flow transported by an independent velocity field u. For small $\delta \ell$ we have the same equations as Euler for ω

$$\frac{D\boldsymbol{\delta}\boldsymbol{\ell}}{Dt} = \boldsymbol{\delta}\boldsymbol{\ell}\cdot\nabla\boldsymbol{u} \qquad \qquad \frac{D}{Dt} = \frac{\partial}{\partial t} + \boldsymbol{u}\cdot\nabla$$

Following the analogy with Euler, Ertel's Theorem holds so there is a *b*-field:

$$\frac{D(\boldsymbol{\delta \ell} \cdot \nabla \boldsymbol{u})}{Dt} = \boldsymbol{\delta \ell} \cdot \nabla \left(\frac{\boldsymbol{D u}}{\boldsymbol{D t}}\right)$$

Du/Dt represents any dynamics one wishes to impose on the problem. Thus all the conditions hold for Theorem 1:

1. $oldsymbol{w}=oldsymbol{\delta}oldsymbol{\ell}$

2. $\boldsymbol{a} = \boldsymbol{\delta} \boldsymbol{\ell} \cdot
abla \boldsymbol{u}$

3. $b = \delta \ell \cdot \nabla \left(\frac{D u}{D t} \right) \longrightarrow$ a Ricatti equation plus an ortho-normal frame ...

Ideal MHD

Consider a magnetic field \boldsymbol{B} coupled to a fluid (div $\boldsymbol{u} = 0 = \operatorname{div} \boldsymbol{B}$)

$$\frac{D\boldsymbol{u}}{Dt} = \boldsymbol{B} \cdot \nabla \boldsymbol{B} - \nabla p \qquad \qquad \frac{D\boldsymbol{B}}{Dt} = \boldsymbol{B} \cdot \nabla \boldsymbol{u}$$

Defining Elsasser variables with \pm -material derivatives (two time-clocks)

$$\boldsymbol{v}^{\pm} = \boldsymbol{u} \pm \boldsymbol{B}; \qquad \quad \frac{D^{\pm}}{Dt} = \frac{\partial}{\partial t} + \boldsymbol{v}^{\pm} \cdot \nabla$$

the magnetic field ${\boldsymbol B}$ and ${\boldsymbol v}^\pm$ satisfy with div ${\boldsymbol v}^\pm=0$

$$\frac{D^{\pm}\boldsymbol{v}^{\mp}}{Dt} = -\nabla p; \qquad \frac{D^{\pm}\boldsymbol{B}}{Dt} = \boldsymbol{B} \cdot \nabla \boldsymbol{v}^{\pm}$$

Moffatt (1985) suggested that B takes the place of ω in ideal MHD.

Ertel's Theorem (proof omitted) for this system is

$$\frac{D^{\mp}(\boldsymbol{B}\cdot\nabla\boldsymbol{v}^{\pm})}{Dt} = -P\boldsymbol{B}\,.$$

With two time-clocks, we have the correspondence

$$oldsymbol{w}\equivoldsymbol{B}$$
 $oldsymbol{a}^{\pm}\equivoldsymbol{B}\cdot
abla oldsymbol{v}^{\pm}$ $oldsymbol{b}\equiv-Poldsymbol{B}$

$$\alpha_{pb} = \hat{\boldsymbol{B}} \cdot P\hat{\boldsymbol{B}} \qquad \boldsymbol{\chi}_{pb} = \hat{\boldsymbol{B}} \times P\hat{\boldsymbol{B}}$$

Define tetrads q^{\pm} and q_{pb} as follows

$$\mathbf{q}^{\pm} = \begin{bmatrix} \alpha^{\pm}, \, \boldsymbol{\chi}^{\pm} \end{bmatrix} \qquad \quad \mathbf{q}_{pb} = \begin{bmatrix} \alpha_{pb}, \, \boldsymbol{\chi}_{pb} \end{bmatrix}.$$

The tetrads \mathfrak{q}^\pm satisfy the compatibility relation

$$\frac{D^{\mp}\mathfrak{q}^{\pm}}{Dt} + \mathfrak{q}^{\pm} \circledast \mathfrak{q}^{\mp} + \mathfrak{q}_{pb} = 0$$

MHD-Lagrangian frame dynamics

We have 2 sets of orthonormal vectors \hat{B} , $(\hat{B} \times \hat{\chi}^{\pm})$, $\hat{\chi}^{\pm}$ acted on by their opposite Lagrangian time derivatives.

$$egin{aligned} &rac{D^{\mp}\hat{oldsymbol{B}}}{Dt} \,=\, oldsymbol{\mathcal{D}}^{\mp} imes\hat{oldsymbol{B}}\,, \ &rac{D^{\mp}(\hat{oldsymbol{B}} imes\hat{oldsymbol{\chi}}^{\pm})}{Dt} \,=\, oldsymbol{\mathcal{D}}^{\mp} imes(\hat{oldsymbol{B}} imes\hat{oldsymbol{\chi}}^{\pm})\,, \ &rac{D^{\mp}\hat{oldsymbol{\chi}}^{\pm}}{Dt} \,=\, oldsymbol{\mathcal{D}}^{\mp} imes\hat{oldsymbol{\chi}}^{\pm} \end{aligned}$$

where the pair of Darboux vectors \mathcal{D}^{\mp} are defined as

$$\mathcal{D}^{\mp} = oldsymbol{\chi}^{\mp} - rac{c_1^{\mp}}{\chi^{\mp}} \hat{oldsymbol{B}} \,, \qquad c_1^{\mp} = \hat{oldsymbol{B}} \cdot [\hat{oldsymbol{\chi}}^{\pm} imes (oldsymbol{\chi}_{p\,b} + lpha^{\pm} oldsymbol{\chi}^{\mp})] \,.$$