Quaternions and particle dynamics in the Euler fluid equations

J. D. Gibbon
Mathematics Department Imperial College London, London SW7 2AZ
j.d.gibbon@imperial.ac.uk

Maryland CSCAMM Meeting; October 23-27, 2006

Collaborators

JDG \& Darryl Holm 06: http://arxiv.org/abs/nlin.CD/0607020
JDG, Holm, Kerr \& Roulstone: Nonlinearity 19, 1969-83, 2006

$$
\text { JDG, Physica D, 166, 17-28, } 2002 .
$$

Galanti, JDG \& Heritage; Nonlinearity 10, 1675, 1997.
Galanti, JDG \& Kerr, in Turbulence structure \& vortex dynamics, (pp 23-34, eds: Hunt \& Vassilicos, CUP 2000).

Summary of this talk

Question: Do the Euler equations possess some subtle geometric structure that guides the direction of vorticity - see Peter Constantin, Geometric statistics in turbulence, SIAM Reviews, 36, 73-98.

1. Quaternions: what are they?
2. Lagrangian particle dynamics: We find explicit equations for the Lagrangian derivatives of an ortho-normal co-ordinate system at each point in space. (JDG/Holm 06)
3. For the $3 D$-Euler equations; Ertel's Theorem shows how Euler fits naturally into this framework (JDG, Holm, Kerr \& Roulstone 2006).
4. Review of work on the direction of Euler vorticity, particularly that of Constantin, Fefferman \& Majda 1996; Deng, Hou \& Yu 2005/6 \& Chae 2006.
5. A different direction of vorticity result involving the pressure Hessian.

Lord Kelvin (William Thompson) once said:

Quaternions came from Hamilton after his best work had been done, \& though beautifully ingenious, they have been an unmixed evil to those who have touched them in any way.

O'Connor, J. J. \& Robertson, E. F. 1998 Sir William Rowan Hamilton,
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Hamilton.html
Kelvin was wrong because quaternions are now used in the computer animation, avionics \& robotics industries to track objects undergoing sequences of tumbling rotations.

- Visualizing quaternions, by Andrew J. Hanson, MK-Elsevier, 2006.
- Quaternions \& rotation Sequences: a Primer with Applications to Orbits, Aerospace \& Virtual Reality, J. B. Kuipers, Princeton University Press, 1999.

What are quaternions? (Hamilton (1843))

Quaternions are constructed from a scalar p \& a 3-vector \boldsymbol{q} by forming the tetrad

$$
\mathfrak{p}=[p, \boldsymbol{q}]=p I-\boldsymbol{q} \cdot \boldsymbol{\sigma}, \quad \boldsymbol{q} \cdot \boldsymbol{\sigma}=\sum_{i=1}^{3} q_{i} \sigma_{i}
$$

based on the Pauli spin matrices that obey the relations $\sigma_{i} \sigma_{j}=-\delta_{i j}-\epsilon_{i j k} \sigma_{k}$

$$
\sigma_{1}=\left(\begin{array}{rr}
0 & i \\
i & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)
$$

Thus quaternions obey the multiplication rule

$$
\mathfrak{p}_{1} \circledast \mathfrak{p}_{2}=\left[p_{1} p_{2}-\boldsymbol{q}_{1} \cdot \boldsymbol{q}_{2}, p_{1} \boldsymbol{q}_{2}+p_{2} \boldsymbol{q}_{1}+\boldsymbol{q}_{1} \times \boldsymbol{q}_{2}\right] .
$$

They are associative but obviously non-commutative.

Quaternions, Rotations and Cayley-Klein parameters

Let $\hat{\mathfrak{p}}=[p, \boldsymbol{q}]$ be a unit quaternion with inverse $\hat{\mathfrak{p}}^{*}=[p,-\boldsymbol{q}]$ with $p^{2}+q^{2}=1$, which guarantees $\hat{\mathfrak{p}} \circledast \hat{\mathfrak{p}}^{*}=[1,0]$. For a pure quaternion $\mathfrak{r}=[0, \boldsymbol{r}]$ there exists a transformation $\mathfrak{r} \rightarrow \mathfrak{r}^{\prime}$

$$
\mathfrak{r}^{\prime}=\hat{\mathfrak{p}} \circledast \mathfrak{r} \circledast \hat{\mathfrak{p}}^{*}=\left[0,\left(p^{2}-q^{2}\right) \boldsymbol{r}+2 p(\boldsymbol{q} \times \boldsymbol{r})+2 \boldsymbol{q}(\boldsymbol{r} \cdot \boldsymbol{q})\right] .
$$

Now choose $p= \pm \cos \frac{1}{2} \theta$ and $\boldsymbol{q}= \pm \hat{\boldsymbol{n}} \sin \frac{1}{2} \theta$, where $\hat{\boldsymbol{n}}$ is the unit normal to \boldsymbol{r}

$$
\mathfrak{r}^{\prime}=\hat{\mathfrak{p}} \circledast \mathfrak{r} \circledast \hat{\mathfrak{p}}^{*}=[0, \boldsymbol{r} \cos \theta+(\hat{\boldsymbol{n}} \times \boldsymbol{r}) \sin \theta]
$$

where

$$
\hat{\mathfrak{p}}= \pm\left[\cos \frac{1}{2} \theta, \hat{\boldsymbol{n}} \sin \frac{1}{2} \theta\right] .
$$

This represents a rotation by an angle θ of the 3 -vector \boldsymbol{r} about its normal $\hat{\boldsymbol{n}}$. The elements of the unit quaternion $\hat{\mathfrak{p}}$ are the Cayley-Klein parameters from which the Euler angles can be calculated. All terms are quadratic in p and q, and thus allow a double covering (\pm) (see Whittaker 1945).

General Lagrangian evolution equations

Consider the general Lagrangian evolution equation for a 3-vector \boldsymbol{w} such that

$$
\frac{D \boldsymbol{w}}{D t}=\boldsymbol{a}(\boldsymbol{x}, t) \quad \frac{D}{D t}=\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla
$$

transported by a velocity field \boldsymbol{u}. Define the scalar α_{a} the 3-vector $\boldsymbol{\chi}_{a}$ as

$$
\alpha_{a}=|\boldsymbol{w}|^{-1}(\hat{\boldsymbol{w}} \cdot \boldsymbol{a}), \quad \boldsymbol{\chi}_{a}=|\boldsymbol{w}|^{-1}(\hat{\boldsymbol{w}} \times \boldsymbol{a})
$$

for $|\boldsymbol{w}| \neq 0$. Via the decomposition $\boldsymbol{a}=\alpha_{a} \boldsymbol{w}+\boldsymbol{\chi}_{a} \times \boldsymbol{w},|\boldsymbol{w}| \& \hat{\boldsymbol{w}}$ satisfy

$$
\frac{D|\boldsymbol{w}|}{D t}=\alpha_{a}|\boldsymbol{w}|, \quad \frac{D \hat{\boldsymbol{w}}}{D t}=\boldsymbol{\chi}_{a} \times \hat{\boldsymbol{w}} .
$$

α_{a} is the growth rate (Constantin 1994) \& χ_{a} is the 'swing' rate. The 'tetrads'

$$
\mathfrak{q}_{a}=\left[\alpha_{a}, \boldsymbol{\chi}_{a}\right], \quad \mathfrak{w}=[0, \boldsymbol{w}] .
$$

allow us to write this as

$$
\frac{D \mathfrak{w}}{D t}=\mathfrak{q}_{a} \circledast \mathfrak{w}
$$

J. D. Gibbon, CSCAMM; October 2006

Theorem: (JDG/Holm 06) If \boldsymbol{a} is differentiable in the Lagrangian sense s.t.

$$
\frac{D \boldsymbol{a}}{D t}=\boldsymbol{b}(\boldsymbol{x}, t)
$$

(i) For for $|\boldsymbol{w}| \neq 0, \mathfrak{q}_{a}$ and \mathfrak{q}_{b} satisfy the Ricatti equation

$$
\frac{D \mathfrak{q}_{a}}{D t}+\mathfrak{q}_{a} \circledast \mathfrak{q}_{a}=\mathfrak{q}_{b}
$$

(ii) At each point \boldsymbol{x} there exists an ortho-normal frame $\left(\hat{\boldsymbol{w}}, \hat{\boldsymbol{\chi}}_{a}, \hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right) \in S O(3)$ whose Lagrangian time derivative is expressed as

$$
\begin{aligned}
\frac{D \hat{\boldsymbol{w}}}{D t} & =\mathcal{D}_{a b} \times \hat{\boldsymbol{w}} \\
\frac{D\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)}{D t} & =\mathcal{D}_{a b} \times\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right), \\
\frac{D \hat{\boldsymbol{\chi}}_{a}}{D t} & =\mathcal{D}_{a b} \times \hat{\boldsymbol{\chi}}_{a},
\end{aligned}
$$

where the Darboux angular velocity vector $\mathcal{D}_{a b}$ is defined as

$$
\mathcal{D}_{a b}=\boldsymbol{\chi}_{a}+\frac{c_{1}}{\chi_{a}} \hat{\boldsymbol{w}}, \quad c_{1}=\hat{\boldsymbol{w}} \cdot\left(\hat{\boldsymbol{\chi}}_{a} \times \boldsymbol{\chi}_{b}\right)
$$

Lagrangian frame dynamics: tracking a particle

The dotted line represents a particle (\bullet) trajectory moving from $\left(\boldsymbol{x}_{1}, t_{1}\right)$ to $\left(\boldsymbol{x}_{2}, t_{2}\right)$. The orientation of the orthonormal unit vectors

$$
\left\{\hat{\boldsymbol{w}}, \quad \hat{\boldsymbol{\chi}}_{a}, \quad\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)\right\}
$$

is driven by the Darboux vector $\mathcal{D}_{a b}=\boldsymbol{\chi}_{a}+\frac{c_{1}}{\chi_{a}} \hat{\boldsymbol{w}}$ where $c_{1}=\hat{\boldsymbol{w}} \cdot\left(\hat{\boldsymbol{\chi}}_{a} \times \boldsymbol{\chi}_{b}\right)$. Thus we need the 'quartet' of vectors to make this process work

$$
\{\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{a}, \boldsymbol{b}\}
$$

Proof: (i) It is clear that (with $\mathfrak{q}_{b}=\left[\alpha_{b}, \boldsymbol{\chi}_{b}\right]$)

$$
\frac{D^{2} \mathfrak{w}}{D t^{2}}=[0, \boldsymbol{b}]=\mathfrak{q}_{b} \circledast \mathfrak{w}
$$

Compatibility between this and the \mathfrak{q}-equation means that

$$
\left(\frac{D \mathfrak{q}_{a}}{D t}+\mathfrak{q}_{a} \circledast \mathfrak{q}_{a}-\mathfrak{q}_{b}\right) \circledast \mathfrak{w}=0
$$

(ii) Now consider the ortho-normal frame ($\left.\hat{\boldsymbol{w}}, \hat{\boldsymbol{\chi}}_{a}, \hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)$ as in the Figure below. The evolution of χ_{a} comes from

$$
\frac{D \mathfrak{q}_{a}}{D t}+\mathfrak{q}_{a} \circledast \mathfrak{q}_{a}=\mathfrak{q}_{b}
$$

and gives

$$
\frac{D \boldsymbol{\chi}_{a}}{D t}=-2 \alpha_{a} \boldsymbol{\chi}_{a}+\boldsymbol{\chi}_{b}
$$

\boldsymbol{b} can be expressed in this ortho-normal frame as the linear combination

$$
\begin{gathered}
\boldsymbol{b}=|\boldsymbol{w}|\left[\alpha_{b} \hat{\boldsymbol{w}}+c_{1} \hat{\boldsymbol{\chi}}_{a}+c_{2}\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)\right], \\
\boldsymbol{\chi}_{b}=c_{1}\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)-c_{2} \hat{\boldsymbol{\chi}}_{a},
\end{gathered}
$$

where $c_{1}=\hat{\boldsymbol{w}} \cdot\left(\hat{\boldsymbol{\chi}}_{a} \times \boldsymbol{\chi}_{b}\right)$ and $c_{2}=-\left(\hat{\boldsymbol{\chi}}_{a} \cdot \boldsymbol{\chi}_{b}\right)$. From the Ricatti equation for the tetrad $\mathfrak{q}_{a}=\left[\alpha_{a}, \boldsymbol{\chi}_{a}\right]\left(\right.$ where $\left.\chi_{a}=\left|\boldsymbol{\chi}_{a}\right|\right)$

$$
\frac{D \boldsymbol{\chi}_{a}}{D t}=-2 \alpha_{a} \boldsymbol{\chi}_{a}+\boldsymbol{\chi}_{b}, \quad \Rightarrow \quad \frac{D \chi_{a}}{D t}=-2 \alpha_{a} \chi_{a}-c_{2}
$$

There follows

$$
\frac{D \hat{\boldsymbol{\chi}}_{a}}{D t}=c_{1} \chi_{a}^{-1}\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right), \quad \frac{D\left(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}}_{a}\right)}{D t}=\chi_{a} \hat{\boldsymbol{w}}-c_{1} \chi_{a}^{-1} \hat{\boldsymbol{\chi}}_{a}
$$

which, together with

$$
\frac{D \hat{\boldsymbol{w}}_{a}}{D t}=\boldsymbol{\chi}_{a} \times \hat{\boldsymbol{w}}
$$

can be re-expressed in terms of the Darboux vector $\mathcal{D}_{a}=\boldsymbol{\chi}_{a}+\frac{c_{1}}{\chi_{a}} \hat{\boldsymbol{w}}$.

Ertel's Theorem \& the $3 D$ Euler equations

$$
\frac{D \boldsymbol{\omega}}{D t}=\boldsymbol{\omega} \cdot \nabla \boldsymbol{u}=S \boldsymbol{\omega}
$$

Euler in vorticity format
Theorem: (Ertel 1942) If $\boldsymbol{\omega}$ satisfies the $3 D$ incompressible Euler equations then any arbitrary differentiable μ satisfies

$$
\frac{D}{D t}(\boldsymbol{\omega} \cdot \nabla \mu)=\boldsymbol{\omega} \cdot \nabla\left(\frac{D \mu}{D t}\right) \quad \Longrightarrow \quad\left[\frac{D}{D t}, \boldsymbol{\omega} \cdot \nabla\right]=0 .
$$

Proof: Consider $\boldsymbol{\omega} \cdot \nabla \mu \equiv \omega_{i} \mu_{, i}$

$$
\begin{aligned}
\frac{D}{D t}\left(\omega_{i} \mu_{, i}\right) & =\frac{D \omega_{i}}{D t} \mu_{, i}+\omega_{i}\left\{\frac{\partial}{\partial x_{i}}\left(\frac{D \mu}{D t}\right)-u_{k, i} \mu_{, k}\right\} \\
& =\underbrace{\left\{\omega_{j} u_{i, j} \mu_{, i}-\omega_{i} u_{k, i} \mu_{, k}\right\}}_{\text {zero under summation }}+\omega_{i} \frac{\partial}{\partial x_{i}}\left(\frac{D \mu}{D t}\right)
\end{aligned}
$$

In characteristic (Lie-derivative) form, $\boldsymbol{\omega} \cdot \frac{\partial}{\partial \boldsymbol{x}}(t)=\boldsymbol{\omega} \cdot \frac{\partial}{\partial \boldsymbol{x}}(0)$ is a Lagrangian invariant (Cauchy 1859) and is "frozen in".

Various references

- Ertel; Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59, 271-281, (1942).
- Truesdell \& Toupin, Classical Field Theories, Encyclopaedia of Physics III/1, ed. S. Flugge, Springer (1960).
- Ohkitani; Phys. Fluids, A5, 2576, (1993).
- Kuznetsov \& Zakharov; Hamiltonian formalism for nonlinear waves, Physics Uspekhi, 40 (11), 1087-116 (1997).
- Bauer's thesis 2000 (ETH-Berlin); Gradient entropy vorticity, potential vorticity and its history.
- Viudez; On the relation between Beltrami's material vorticity and RossbyErtel's Potential, J. Atmos. Sci. (2001).

Ohkitani's result \& the pressure Hessian

Define the Hessian matrix of the pressure

$$
P=\left\{p_{, i j}\right\}=\left\{\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}\right\}
$$

then Ohkitani took $\mu=u_{i}$ (Phys. Fluids, A5, 2576, 1993).
$\underline{\text { Result: The vortex stretching vector } \boldsymbol{\omega} \cdot \nabla \boldsymbol{u}=S \boldsymbol{\omega} \text { obeys }, ~(1)}$

$$
\frac{D(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})}{D t}=\frac{D(S \boldsymbol{\omega})}{D t}=\boldsymbol{\omega} \cdot \nabla\left(\frac{D \boldsymbol{u}}{D t}\right)=-P \boldsymbol{\omega}
$$

Thus for Euler, via Ertel's Theorem, we have the identification:

$$
\boldsymbol{w} \equiv \boldsymbol{\omega} \quad \boldsymbol{a} \equiv \boldsymbol{\omega} \cdot \nabla \boldsymbol{u}=S \boldsymbol{\omega} \quad \boldsymbol{b} \equiv-P \boldsymbol{\omega}
$$

with a quartet

$$
(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{a}, \boldsymbol{b}) \equiv(\boldsymbol{u}, \boldsymbol{\omega}, S \boldsymbol{\omega},-P \boldsymbol{\omega})
$$

Euler: the variables $\alpha(\boldsymbol{x}, t)$ and $\boldsymbol{\chi}(\boldsymbol{x}, t)$

$$
S \hat{\boldsymbol{\omega}}=\alpha \hat{\boldsymbol{\omega}}+\boldsymbol{\chi} \times \hat{\boldsymbol{\omega}}
$$

See JDG, Holm, Kerr \& Roulstone 2006.

$$
\begin{aligned}
\left(\alpha_{a}\right) & \alpha & =\hat{\boldsymbol{\omega}} \cdot S \hat{\boldsymbol{\omega}} & \boldsymbol{\chi}
\end{aligned}=\hat{\boldsymbol{\omega}} \times S \hat{\boldsymbol{\omega}} \quad\left(\boldsymbol{\chi}_{a}\right), ~ \boldsymbol{\chi}_{p}=\hat{\boldsymbol{\omega}} \times P \hat{\boldsymbol{\omega}} \quad\left(-\boldsymbol{\chi}_{b}\right)
$$

$$
\frac{D \mathfrak{q}}{D t}+\mathfrak{q} \circledast \mathfrak{q}+\mathfrak{q}_{p}=0
$$

constrained by $\operatorname{Tr} P=\Delta p=-u_{i, j} u_{j, i}=\frac{1}{2} \omega^{2}-\operatorname{Tr} S^{2}$.

Lagrangian frame dynamics: tracking an Euler fluid particle

The dotted line represents the fluid packet (\bullet) trajectory moving from $\left(\boldsymbol{x}_{1}, t_{1}\right)$ to $\left(\boldsymbol{x}_{2}, t_{2}\right)$. The orientation of the orthonormal unit vectors

$$
\{\hat{\omega}, \quad \hat{\chi}, \quad(\hat{\omega} \times \hat{\chi})\}
$$

is driven by the Darboux vector

$$
\mathcal{D}=\boldsymbol{\chi}+\frac{c_{1}}{\chi} \hat{\boldsymbol{\omega}}, \quad c_{1}=-\hat{\boldsymbol{\omega}} \cdot\left(\hat{\boldsymbol{\chi}} \times \boldsymbol{\chi}_{p}\right)
$$

Thus the pressure Hessian within c_{1} drives the Darboux vector \mathcal{D}.

The α and χ equations

In terms of α and χ, the Ricatti equation for \mathfrak{q}

$$
\frac{D \mathfrak{q}_{a}}{D t}+\mathfrak{q}_{a} \circledast \mathfrak{q}_{a}=\mathfrak{q}_{b}
$$

becomes

$$
\frac{D \alpha}{D t}=\chi^{2}-\alpha^{2}-\alpha_{p}, \quad \frac{D \boldsymbol{\chi}}{D t}=-2 \alpha \boldsymbol{\chi}-\boldsymbol{\chi}_{p}
$$

(Galanti, JDG \& Heritage; Nonlinearity 10, 1675, 1997). Stationary values are

$$
\alpha=\gamma_{0}, \quad \boldsymbol{\chi}=\mathbf{o}, \quad \alpha_{p}=-\gamma_{0}^{2}
$$

which correspond to Burgers'-like vortices.
When tubes \& sheets bend \& tangle then $\chi \neq 0$ and \mathfrak{q} becomes a full tetrad driven by \mathfrak{q}_{p} which is coupled back through the elliptic pressure condition.
Note: Off-diagonal elements of P change rapidly near intense vortical regions across which χ_{p} and α_{p} change rapidly.

Phase plane

On Lagrangian trajectories, the $\alpha-\chi$ equations become

$$
\frac{\partial \alpha}{\partial t}=\chi^{2}-\alpha^{2}-\alpha_{p}, \quad \frac{\partial \chi}{\partial t}=-2 \alpha \chi+C_{p}
$$

where $C_{p}=-\hat{\boldsymbol{\chi}} \cdot \boldsymbol{\chi}_{p}$.
In regions of the $\alpha-\chi$ phase plane where $\alpha_{p}=$ const, $C_{p}=$ const there are 2 critical points:

$$
(\alpha, \chi)=\left(\pm \alpha_{0}, \chi_{0}\right) \quad 2 \alpha_{0}^{2}=\alpha_{p}+\left[\alpha_{p}^{2}+C_{p}^{2}\right]^{1 / 2}
$$

- The critical point in the LH-half-plane $\left(-\alpha_{0}, \chi_{0}\right)$ is an unstable spiral;
- The critical point in the RH-half-plane is $\left(\alpha_{0}, \chi_{0}\right)$ is a stable spiral.

The next few slides: remarks on the "direction of vorticity" in Euler

1. The BKM theorem

2. - The work of Constantin, Fefferman \& Majda 1996 and Constantin 1994

- The work of Deng, Hou \& Yu 2005/6
- Can our quaternionic Ricatti equation give anything in terms of P ?

The Beale-Kato-Majda Theorem (CMP 94, 61-6, 1984)
Theorem: There exists a global solution of the Euler equations $\boldsymbol{u} \in$ $C\left([0, \infty] ; H^{s}\right) \cap C^{1}\left([0, \infty] ; H^{s-1}\right)$ for $s \geq 3$ if, for every $t^{*}>0$,

$$
\int_{0}^{t^{*}}\|\boldsymbol{\omega}(\tau)\|_{L^{\infty}(\Omega)} d \tau<\infty
$$

The proof is based on $\|\nabla \boldsymbol{u}\|_{\infty} \leq c\|\boldsymbol{\omega}\|_{\infty}\left[1+\log H_{3}\right]$.
Thus one needs to numerically monitor only $\int_{0}^{t^{*}}\|\boldsymbol{\omega}(\tau)\|_{\infty} d \tau$.
Corollary: If a singularity is observed in a numerical experiment of the form $\|\boldsymbol{\omega}\|_{\infty} \sim\left(t^{*}-t\right)^{-\beta}$ then β must lie in the range $\beta \geq 1$ for the singularity to be genuine \& not an artefact of the numerical calculation.

Constantin, Fefferman \& Majda; Comm PDEs, 21, 559-571, 1996
The image \boldsymbol{W}_{t} of a set \boldsymbol{W}_{0} is given by $\boldsymbol{W}_{t}=\boldsymbol{X}\left(t, \boldsymbol{W}_{0}\right)$. \boldsymbol{W}_{0} is said to be smoothly directed if there exists a length $\rho>0$ and a ball $0<r<\frac{1}{2} \rho$ such that: 1. $\hat{\boldsymbol{\omega}}(\cdot, t)$ has a Lipschitz extn to the ball of radius 4ρ centred at $\boldsymbol{X}(\boldsymbol{q}, t) \&$

$$
M=\lim _{t \rightarrow T} \sup _{\boldsymbol{q} \in \boldsymbol{W}_{0}^{*}} \int_{0}^{t}\|\nabla \hat{\boldsymbol{\omega}}(\cdot, t)\|_{L^{\infty}\left(B_{4 \rho}\right)}^{2} d t<\infty .
$$

i.e. the direction of vorticity is well-behaved in the nbhd of a set of trajectories.
2. The condition $\sup _{B_{3 r}\left(\boldsymbol{W}_{t}\right)}|\boldsymbol{\omega}(\boldsymbol{x}, t)| \leq m \sup _{B_{r}\left(\boldsymbol{W}_{t}\right)}|\boldsymbol{\omega}(\boldsymbol{x}, t)|$ holds for all $t \in$ $[0, T)$ with $m=$ const >0; i.e. this nbhd captures large \& growing vorticity but not so that it overlaps with another similar region \& $\sup _{B_{4 r}\left(\boldsymbol{W}_{t}\right)}|\boldsymbol{u}(\boldsymbol{x}, t)| \leq$ $U(t):=\sup _{\boldsymbol{x}}|\boldsymbol{u}(\boldsymbol{x}, t)|<\infty$ (Cordoba \& Fefferman 2001; for tubes).
Theorem: (CFM 1996) Assume that \boldsymbol{W}_{0} is smoothly directed as in (i)-(ii). Then \exists a time $\tau>0$ \& a constant Γ s.t. for any $0 \leq t_{0}<T$ and $0 \leq t-t_{0} \leq \tau$

$$
\sup _{B_{r}\left(\boldsymbol{W}_{t}\right)}|\boldsymbol{\omega}(\boldsymbol{x}, t)| \leq \Gamma \sup _{B_{\rho}\left(\boldsymbol{W}_{t}\right)}\left|\boldsymbol{\omega}\left(\boldsymbol{x}, t_{0}\right)\right|
$$

The work of Deng, Hou \& Yu; Comm PDEs, 31, 293-306, 2006
Consider a family of vortex line segments L_{t} in a region of max-vorticity. Denote by $L(t)$ the arc length of $L_{t}, \hat{\boldsymbol{n}}$ the unit normal \& κ the curvature. DHY define

$$
\begin{gathered}
U_{\hat{\omega}}(t) \equiv \max _{x, \boldsymbol{y} \in L_{t}}|(\boldsymbol{u} \cdot \hat{\boldsymbol{\omega}})(\boldsymbol{x}, t)-(\boldsymbol{u} \cdot \hat{\boldsymbol{\omega}})(\boldsymbol{y}, t)| \\
U_{n}(t) \equiv \max _{L_{t}}|\boldsymbol{u} \cdot \hat{\boldsymbol{n}}|, \text { and } M(t) \equiv \max \left(\|\nabla \cdot \hat{\boldsymbol{\omega}}\|_{L^{\infty}\left(L_{t}\right)},\|\kappa\|_{L^{\infty}\left(L_{t}\right)}\right) .
\end{gathered}
$$

Theorem: (Deng, Hou \& Yu 06): Let $A, B \in(0,1)$ with $B=1-A$, and C_{0} be a positive constant. If

1. $U_{\hat{\omega}}(t)+U_{n}(t) \lesssim(T-t)^{-A}$,
2. $M(t) L(t) \leq C_{0}$,
3. $L(t) \gtrsim(T-t)^{B}$,
then there will be no blow-up up to time T.
Also J. Deng, T. Y. Hou \& X. Yu; Comm. PDEs, 30, 225-243, 2005.

Using the pressure Hessian

(see also Chae: $\int_{0}^{T}\|S \hat{\boldsymbol{\omega}} \cdot P \hat{\boldsymbol{\omega}}\|_{\infty} d \tau<\infty$; Comm. P\&A-M., 109, 1-21, 2006).
Theorem: (JDG, Holm, Kerr \& Roulstone 06): \exists a global solution of the Euler equations, $\boldsymbol{u} \in C\left([0, \infty] ; H^{s}\right) \cap C^{1}\left([0, \infty] ; H^{s-1}\right)$ for $s \geq 3$ if

$$
\int_{0}^{T}\left\|\boldsymbol{\chi}_{p}\right\|_{L^{\infty}(\mathbb{D})} d \tau<\infty
$$

with the exception of when $\hat{\boldsymbol{\omega}}$ becomes collinear with an e-vec of P at $t=T$.
Proof: With $|S \hat{\boldsymbol{w}}|^{2}=\alpha^{2}+\boldsymbol{\chi}^{2}$,

$$
\frac{D|S \hat{\boldsymbol{w}}|}{D t} \leq-\alpha|S \hat{\boldsymbol{w}}|+\frac{|\alpha|\left|\alpha_{p}\right|+|\boldsymbol{\chi}|\left|\boldsymbol{\chi}_{p}\right|}{\left(\alpha^{2}+\boldsymbol{\chi}^{2}\right)^{1 / 2}}
$$

Because $D|\boldsymbol{\omega}| / D t=\alpha|\boldsymbol{\omega}|$, our concern is with $\alpha \geq 0$

$$
\frac{D|S \hat{\boldsymbol{w}}|}{D t} \leq\left|\alpha_{p}\right|+\left|\boldsymbol{\chi}_{p}\right|
$$

Possible that $|P \hat{\boldsymbol{\omega}}|$ blows up simultaneously as the angle between $\hat{\boldsymbol{\omega}}$ and $P \hat{\boldsymbol{\omega}} \rightarrow 0$ thus keeping $\boldsymbol{\chi}_{p}$ finite; i.e. $\int_{0}^{t}\left\|\boldsymbol{\chi}_{p}\right\|_{L^{\infty}(\mathbb{D})} d \tau<\infty$ but $\int_{0}^{t}\left\|\alpha_{p}\right\|_{L^{\infty}(\mathbb{D})} d \tau \rightarrow \infty$.

Frame dynamics \& the Frenet-Serret equations

With $\hat{\boldsymbol{w}}$ as the unit tangent vector, $\hat{\boldsymbol{\chi}}$ as the unit bi-normal and $\hat{\boldsymbol{w}} \times \hat{\chi}$ as the unit principal normal, the matrix N can be formed

$$
N=\left(\hat{\boldsymbol{w}}^{T},(\hat{\boldsymbol{w}} \times \hat{\boldsymbol{\chi}})^{T}, \hat{\boldsymbol{\chi}}^{T}\right)
$$

with

$$
\frac{D N}{D t}=G N, \quad G=\left(\begin{array}{ccc}
0 & -\chi_{a} & 0 \\
\chi_{a} & 0 & -c_{1} \chi_{a}^{-1} \\
0 & c_{1} \chi_{a}^{-1} & 0
\end{array}\right)
$$

The Frenet-Serret equations for a space-curve are

$$
\frac{d N}{d s}=F N \quad \text { where } \quad F=\left(\begin{array}{rrr}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)
$$

where κ is the curvature and τ is the torsion.

The arc-length derivative $d / d s$ is defined by

$$
\frac{d}{d s}=\hat{\boldsymbol{\omega}} \cdot \nabla .
$$

The evolution of the curvature κ and torsion τ may be obtained from Ertel's theorem expressed as the commutation of operators $\left[\frac{D}{D t}, \boldsymbol{\omega} \cdot \nabla\right]=0$

$$
\alpha_{a} \frac{d}{d s}+\left[\frac{D}{D t}, \frac{d}{d s}\right]=0 .
$$

This commutation relation immediately gives

$$
\alpha_{a} F+\frac{D F}{D t}=\frac{d G}{d s}+[G, F] .
$$

Thus Ertel's Theorem gives explicit evolution equations for the curvature κ and torsion τ that lie within the matrix F and relates them to c_{1}, χ_{a} and α_{a}.

Mixing

Consider a passive vector line-element $\delta \boldsymbol{\ell}$ in a flow transported by an independent velocity field \boldsymbol{u}. For small $\boldsymbol{\delta} \boldsymbol{\ell}$ we have the same equations as Euler for $\boldsymbol{\omega}$

$$
\frac{D \boldsymbol{\delta} \boldsymbol{\ell}}{D t}=\boldsymbol{\delta} \boldsymbol{\ell} \cdot \nabla \boldsymbol{u} \quad \frac{D}{D t}=\frac{\partial}{\partial t}+\boldsymbol{u} \cdot \nabla
$$

Following the analogy with Euler, Ertel's Theorem holds so there is a \boldsymbol{b}-field:

$$
\frac{D(\boldsymbol{\delta} \boldsymbol{\ell} \cdot \nabla \boldsymbol{u})}{D t}=\boldsymbol{\delta} \boldsymbol{\ell} \cdot \nabla\left(\frac{D \boldsymbol{u}}{D t}\right)
$$

$D \boldsymbol{u} / D t$ represents any dynamics one wishes to impose on the problem. Thus all the conditions hold for Theorem 1:

1. $\boldsymbol{w}=\delta \ell$
2. $a=\delta \ell \cdot \nabla \boldsymbol{u}$
3. $\boldsymbol{b}=\boldsymbol{\delta} \boldsymbol{\ell} \cdot \nabla\left(\frac{D u}{D t}\right) \longrightarrow$ a Ricatti equation plus an ortho-normal frame \ldots

Ideal MHD

Consider a magnetic field \boldsymbol{B} coupled to a fluid $(\operatorname{div} \boldsymbol{u}=0=\operatorname{div} \boldsymbol{B})$

$$
\frac{D \boldsymbol{u}}{D t}=\boldsymbol{B} \cdot \nabla \boldsymbol{B}-\nabla p \quad \frac{D \boldsymbol{B}}{D t}=\boldsymbol{B} \cdot \nabla \boldsymbol{u}
$$

Defining Elsasser variables with \pm-material derivatives (two time-clocks)

$$
\boldsymbol{v}^{ \pm}=\boldsymbol{u} \pm \boldsymbol{B} ; \quad \frac{D^{ \pm}}{D t}=\frac{\partial}{\partial t}+\boldsymbol{v}^{ \pm} \cdot \nabla
$$

the magnetic field \boldsymbol{B} and $\boldsymbol{v}^{ \pm}$satisfy with $\operatorname{div} \boldsymbol{v}^{ \pm}=0$

$$
\frac{D^{ \pm} \boldsymbol{v}^{\mp}}{D t}=-\nabla p ; \quad \frac{D^{ \pm} \boldsymbol{B}}{D t}=\boldsymbol{B} \cdot \nabla \boldsymbol{v}^{ \pm}
$$

Moffatt (1985) suggested that \boldsymbol{B} takes the place of $\boldsymbol{\omega}$ in ideal MHD.

Ertel's Theorem (proof omitted) for this system is

$$
\frac{D^{\mp}\left(\boldsymbol{B} \cdot \nabla \boldsymbol{v}^{ \pm}\right)}{D t}=-P \boldsymbol{B}
$$

With two time-clocks, we have the correspondence

$$
\begin{gathered}
\boldsymbol{w} \equiv \boldsymbol{B} \quad \boldsymbol{a}^{ \pm} \equiv \boldsymbol{B} \cdot \nabla \boldsymbol{v}^{ \pm} \quad \boldsymbol{b} \equiv-P \boldsymbol{B} \\
\alpha_{p b}=\hat{\boldsymbol{B}} \cdot P \hat{\boldsymbol{B}} \quad \boldsymbol{\chi}_{p b}=\hat{\boldsymbol{B}} \times P \hat{\boldsymbol{B}}
\end{gathered}
$$

Define tetrads $\mathfrak{q}^{ \pm}$and $\mathfrak{q}_{p b}$ as follows

$$
\mathfrak{q}^{ \pm}=\left[\alpha^{ \pm}, \boldsymbol{\chi}^{ \pm}\right] \quad \mathfrak{q}_{p b}=\left[\alpha_{p b}, \boldsymbol{\chi}_{p b}\right] .
$$

The tetrads $\mathfrak{q}^{ \pm}$satisfy the compatibility relation

$$
\frac{D^{\mp} \mathfrak{q}^{ \pm}}{D t}+\mathfrak{q}^{ \pm} \circledast \mathfrak{q}^{\mp}+\mathfrak{q}_{p b}=0
$$

MHD-Lagrangian frame dynamics

We have 2 sets of orthonormal vectors $\hat{\boldsymbol{B}},\left(\hat{\boldsymbol{B}} \times \hat{\boldsymbol{\chi}}^{ \pm}\right), \hat{\boldsymbol{\chi}}^{ \pm}$acted on by their opposite Lagrangian time derivatives.

$$
\begin{aligned}
\frac{D^{\mp} \hat{\boldsymbol{B}}}{D t} & =\mathcal{D}^{\mp} \times \hat{\boldsymbol{B}} \\
\frac{D^{\mp}\left(\hat{\boldsymbol{B}} \times \hat{\chi}^{ \pm}\right)}{D t} & =\mathcal{D}^{\mp} \times\left(\hat{\boldsymbol{B}} \times \hat{\chi}^{ \pm}\right), \\
\frac{D^{\mp} \hat{\chi}^{ \pm}}{D t} & =\mathcal{D}^{\mp} \times \hat{\chi}^{ \pm}
\end{aligned}
$$

where the pair of Darboux vectors \mathcal{D}^{\mp} are defined as

$$
\mathcal{D}^{\mp}=\boldsymbol{\chi}^{\mp}-\frac{c_{1}^{\mp}}{\chi^{\mp}} \hat{\boldsymbol{B}}, \quad c_{1}^{\mp}=\hat{\boldsymbol{B}} \cdot\left[\hat{\boldsymbol{\chi}}^{ \pm} \times\left(\boldsymbol{\chi}_{p b}+\alpha^{ \pm} \boldsymbol{\chi}^{\mp}\right)\right] .
$$

