On the Global Regularity of the 3D Navier-Stokes Equations and Relevant Geophysical Models Edriss S. Titi

University of California – Irvine and Weizmann Institute of Science

University of Maryland, October 24-26, 2006

Rayleigh Be'nard Convection / Boussinesq Approximation

Conservation of Momentum

$$\frac{\partial}{\partial t}\vec{u} - \upsilon\Delta\vec{u} + (\vec{u}\cdot\nabla)\vec{u} + \frac{1}{\rho_0}\nabla p + f\vec{k}\times\vec{u} = gT\vec{k}$$

Incompressibility

$$\nabla \cdot \vec{u} = 0$$

Heat Transport and Diffusion

$$\frac{\partial}{\partial t}T - \kappa \Delta T + (\vec{u} \cdot \nabla)T = 0$$

Temperature Estimates

Maximum Principle

$$\left\|T\right\|_{L^{\infty}} \leq C_0 + C_1 \left\|T_0\right\|_{L^{\infty}}$$

Gradient Estimates

$$\frac{1}{2} \frac{d}{dt} \|\nabla T\|_{L^2}^2 + \kappa \|\Delta T\|_{L^2}^2 = \int (\vec{u} \cdot \nabla) T \cdot \Delta T dx$$

Estimate of the Nonlinear Term

$$\left| \int (\vec{u} \cdot \nabla) T \cdot \Delta T dx \right| \le c \|\vec{u}\|_{L^6} \|\nabla T\|_{L^3} \|\Delta T\|_{L^2}$$

Interpolation/Calculus Inequality

Young's Inequality

$$|a \cdot b| \le \frac{1}{p} |a|^p + \frac{1}{q} |b|^q, \qquad \frac{1}{p} + \frac{1}{q} = 1$$

$$\left| \int (\vec{u} \cdot \nabla) T \cdot \Delta T dx \right| \leq \frac{c}{\kappa^3} \|\vec{u}\|_{L^6}^4 \|\nabla T\|_{L^2}^2 + \frac{\kappa}{2} \|\Delta T\|_{L^2}^2$$

$$\Rightarrow \frac{1}{2} \frac{d}{dt} \|\nabla T\|_{L^2}^2 + \frac{\kappa}{2} \|\Delta T\|_{L^2}^2 \leq \frac{c}{\kappa^3} \|u\|_{L^6}^4 \|\nabla T\|_{L^2}^2$$

By Gronwall's inequality

$$\|\nabla T(t)\|_{L^{2}}^{2} \leq \|\nabla T(0)\|_{L^{2}}^{2} e^{\frac{c}{\kappa^{3}} \int_{0}^{t} \|u(\tau)\|_{L^{6}}^{4} d\tau}$$

Question:

$$\int_{0}^{t} \|u(\tau)\|_{L^{6}}^{4} d\tau \leq K?$$

To answer this question we have to deal with the Navier-Stokes equations.

The Navier-Stokes Equations

$$\frac{\partial}{\partial t}\vec{u} - \upsilon\Delta\vec{u} + (\vec{u}\cdot\nabla)\vec{u} + \frac{1}{\rho_0}\nabla p = \vec{f}$$

$$\nabla \cdot \vec{u} = 0$$

Plus Boundary conditions, say periodic in the box

$$\Omega = [0, L]^3$$

• We will assume that $\rho_0 = 1$

• Denote by
$$\langle \varphi \rangle = \int_{\Omega} \varphi(x) dx$$

• Observe that if
$$\langle \vec{u}_0 \rangle = \langle \vec{f} \rangle = 0$$
 then $\langle \vec{u} \rangle = 0$.

Poncare' Inequality

For every $\varphi \in H^1$ with $\langle \varphi \rangle = 0$ we have

$$\|\varphi\|_{L^2} \leq cL \|\nabla \varphi\|_{L^2}$$

Sobolev Spaces

$$H^{s}(\Omega) = \{ \varphi = \sum_{\vec{k} \in Z^{d}} \hat{\varphi}_{\vec{k}} e^{i\vec{k} \cdot \vec{x}} \frac{2\pi}{L}$$

such that

$$\sum_{\vec{k} \in \mathbf{Z}^d} \left| \hat{\varphi}_{\vec{k}} \right|^2 (1 + \left| \vec{k} \right|^2)^s < \infty \}$$

Navier-Stokes Equations Estimates

Formal Energy estimate

$$\frac{1}{2} \frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + \nu \|\nabla \vec{u}\|_{L^{2}}^{2} + \int (\vec{u} \cdot \nabla)\vec{u} \cdot \vec{u} + \int \nabla p \cdot \vec{u} = (\vec{f}, \vec{u})$$

• Observe that since $\nabla \cdot \vec{u} = 0$ we have

$$\int (\vec{u} \cdot \nabla) \vec{u} \cdot \vec{u} dx = \int \nabla p \cdot \vec{u} dx = 0$$

$$\Rightarrow \frac{1}{2} \frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + \nu \|\nabla \vec{u}\|_{L^{2}}^{2} = (\vec{f}, \vec{u})$$

By the Cauchy-Schwarz and Poincare' inequalities

$$\frac{1}{2} \frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + \nu \|\nabla \vec{u}\|_{L^{2}}^{2} \leq \|\vec{f}\|_{L^{2}}^{2} \|\vec{u}\|_{L^{2}}^{2} \leq cL \|\vec{f}\|_{L^{2}} \|\nabla \vec{u}\|_{L^{2}}$$

By the Young's inequality

$$\frac{1}{2} \frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + \nu \|\nabla \vec{u}\|_{L^{2}}^{2} \le \frac{cL^{2}}{\nu} \|\vec{f}\|_{L^{2}}^{2} + \frac{\nu}{2} \|\nabla \vec{u}\|_{L^{2}}^{2}
\frac{1}{2} \frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + \frac{\nu}{2} \|\nabla \vec{u}\|_{L^{2}}^{2} \le \frac{cL^{2}}{\nu} \|\vec{f}\|_{L^{2}}^{2}$$

By Poincare' inequality

$$\frac{d}{dt} \|\vec{u}\|_{L^{2}}^{2} + c \frac{\upsilon}{L^{2}} \|\vec{u}\|_{L^{2}}^{2} \leq \frac{cL^{2}}{\upsilon} \|\vec{f}\|_{L^{2}}^{2}$$

By Gronwall's inequality

$$\|\vec{u}(t)\|_{L^{2}}^{2} \leq e^{-cvL^{-2}t} \|\vec{u}(0)\|_{L^{2}}^{2} + \frac{cL^{4}}{v^{2}} \left(1 - e^{-cvL^{-2}t}\right) \|\vec{f}\|_{L^{2}}^{2} \quad \forall t \in [0, T]$$

and

$$\nu \int_{0}^{T} \|\nabla \vec{u}(\tau)\|_{L^{2}}^{2} d\tau \leq K(L, \|\vec{u}_{0}\|_{L^{2}}, \|\vec{f}\|_{L^{2}}, \nu, T)$$

Theorem (Leray 1932-34)

For every T > 0 there exists a weak solution (in the sense of distribution) of the Navier-stokes equations, which also satisfies

$$\vec{u} \in C_w([0,T], L^2(\Omega)) \cap L^2([0,T], H^1(\Omega))$$

The uniqueness of weak solutions in the three dimensional Navier-Stokes equations case is still an open question.

Strong Solutions of Navier-Stokes

$$\vec{u} \in C([0,T], H^1(\Omega)) \cap L^2([0,T], H^2(\Omega))$$

Enstrophy

$$\|\nabla \times \vec{u}\|_{L^{2}}^{2} = \|\vec{\omega}\|_{L^{2}}^{2} = \|\nabla \vec{u}\|_{L^{2}}^{2}$$

Formal Enstrophy Estimates

$$\frac{1}{2}\frac{d}{dt}\left\|\nabla \vec{u}\right\|_{L^{2}}^{2} + \upsilon\left\|\Delta \vec{u}\right\|_{L^{2}}^{2} + \int (\vec{u}\cdot\nabla)\vec{u}\cdot(-\Delta\vec{u}) + \int \nabla p(-\Delta\vec{u}) = \int \vec{f}\cdot(-\Delta\vec{u})$$

Observe that
$$\int \nabla p \cdot (-\Delta \vec{u}) dx = 0$$

By Cauchy-Schwarz
$$\left| \int \vec{f} \cdot (-\Delta \vec{u}) \right| \leq \frac{\left\| \vec{f} \right\|_{L^2}^2}{\upsilon} + \frac{\upsilon}{4} \left\| \Delta \vec{u} \right\|_{L^2}^2$$

By Hőlder inequality

$$\left| \int (\vec{u} \cdot \nabla) \vec{u} \cdot (-\Delta \vec{u}) \right| \leq \left\| \vec{u} \right\|_{L^4} \left\| \nabla \vec{u} \right\|_{L^4} \left\| \Delta \vec{u} \right\|_{L^2}$$

Calculus/Interpolation (Ladyzhenskaya) Inequatlities

$$\|\varphi\|_{L^{4}} \leq \begin{cases} c \|\varphi\|_{L^{2}}^{\frac{1}{2}} & \|\nabla\varphi\|_{L^{2}}^{\frac{1}{2}} & 2-D \\ c \|\varphi\|_{L^{2}}^{\frac{1}{4}} & \|\nabla\varphi\|_{L^{2}}^{\frac{3}{4}} & 3-D \end{cases}$$

Denote by
$$y = e_0 + \|\nabla \vec{u}\|_{L^2}^2$$

The Two-dimensional Case

$$\dot{y} \le c \ y^2 \qquad \& \qquad \int_0^T y(\tau) d\tau \le K(T)$$

$$\Rightarrow y(t) \leq \widetilde{K}(T)$$

Global regularity of strong solutions to the two-dimensional Navier-Stokes equations.

Navier-Stokes Equations

Two-dimensional Case

* Global Existence and Uniqueness of weak and strong solutions

* Finite dimension global attractor

The Three-dimensional Case

Recall that
$$y = e_0 + \|\nabla \vec{u}\|_{L^2}^2$$

One can show that

$$\dot{y} \le c(\|u\|_{L^6}^4 + e_0^2)y$$

Which implies that

$$y(t) \le y(0) e^{\int_{0}^{t} (\|u(\tau)\|_{L^{6}}^{4} + e_{0}^{2}) d\tau}$$

The Question Is Again Whether:

$$\int_{0}^{T} ||u(\tau)||_{L^{6}}^{4} d\tau \leq K?$$

One can instead use the following Sobolev inequality

$$\|\vec{u}\|_{L^6} \leq c \|\nabla \vec{u}\|_{L^2}$$

Which leads to
$$\dot{y} \le cy^3$$
 & $\int_0^T y(\tau)d\tau \le K$

Theorem (Leray 1932-1934)

There exists $T_*(\|\vec{u}_0\|_{L^2}, \|\vec{f}\|_{L^2}, \nu, L)$ such that $y(t) < \infty$ for every $t \in [0, T_*)$.

Navier-Stokes Equations

- The Three-dimensional Case
 - * Global existence of the weak solutions
 - * Short time existence of the strong solutions
 - * Uniqueness of the strong solutions
- Open Problems:
 - * Uniqueness of the weak solution
 - * Global existence of the strong solution.

Vorticity Formulation

$$\frac{\partial \vec{\omega}}{\partial t} - \nu \Delta \vec{\omega} + (\vec{u} \cdot \nabla) \vec{\omega} - (\vec{\omega} \cdot \nabla) \vec{u} = \nabla \times \vec{f}$$

Vorticity Stretching Term $(\vec{\omega} \cdot \nabla)\vec{u}$

$$(\vec{\omega} \cdot \nabla)\vec{u}$$

Two dimensional case $(\vec{\omega} \cdot \nabla)\vec{u} \equiv \vec{0}$

$$(\vec{\omega} \cdot \nabla) \vec{u} \equiv \vec{0}$$

$$\frac{\partial \vec{\omega}}{\partial t} - \nu \Delta \vec{\omega} + (\vec{u} \cdot \nabla) \vec{\omega} = \nabla \times \vec{f}$$

$$\left| \vec{\omega}(x, t) \right|^2 \text{ Satisfies a maximum principle.}$$

$$\left|\vec{\omega}(x,t)\right|^2$$

The Three-dimensional Case

$$(\vec{\omega} \cdot \nabla) \vec{u} \not\equiv 0$$

$$\vec{\omega} \sim Z$$

$$(\vec{\omega} \cdot \nabla) \vec{u} \sim \mathbf{Z}^2$$

For large initial data $\, \bar{\omega}_0 \,$ the vorticity balance takes the form

$$\dot{z} \sim z^2 \Longrightarrow$$
 Potential "Blow Up"!!

Euler Equations v = 0

Three-Dimensional case

 $\exists T_*(\vec{u}_0)$ such that we have existence and uniqueness on [0,T].

Beale-Kato-Majda

If
$$\int_{0}^{T} \|\vec{\omega}(t)\|_{L^{\infty}} dt < \infty$$
 then we have existence and

uniqueness on the interval [0, T]

• That is, one has to "control" the $\|\vec{\omega}(t)\|_{r^{\infty}}$ in some way!!

Constantin and Fefferman:

Provided sufficient condition involving the Lipschitz regularity of the direction of the vorticity:

$$\vec{\xi} = \frac{\vec{\omega}}{|\vec{\omega}|}$$

Two-Dimensions Euler

$$\frac{\partial \vec{\omega}}{\partial t} + (\vec{u} \cdot \nabla) \vec{\omega} = 0$$

$$\vec{u} = \nabla \times (\psi \vec{k})$$

$$\Delta \psi \vec{k} = \vec{\omega}$$

Yudovich proved a weak version of the

maximum principle, that is $\|\omega(t)\|_{L^{\infty}} \leq \|\omega_0\|_{L^{\infty}}$.

$$\left\|\omega(t)\right\|_{L^{\infty}} \leq \left\|\omega_0\right\|_{L^{\infty}}.$$

IDEA

$$\|\psi\|_{W^{2,p}} = \sum_{|\alpha| \le 2} \|D^{\alpha}\psi\|_{L^{p}} \le \underline{c \cdot p} \|\Delta\psi\|_{L^{p}}$$

Special Results of Global Existence for the three-dimensional Navier-Stokes

Theorem (Kato)

Let $\|u_0\|_{H^{\frac{1}{2}}}$ be small enough. Then the 3D Navier - Stokes equations are globally well - posed for all time with such initial data. The same result holds if the initial data is small in $L^3(\Omega)$ (Kato, Giga & Miyakawa)

- Ω Revolution Domain around the z axis [away from z - axis]
- Let us move to Cylindrical coordinates

Theorem (Ladyzhenskaya) Let

$$\vec{u}_0(x, y, z) = (\varphi_r^0(r, z), \varphi_\theta^0(r, z), \varphi_z^0(r, z))$$

be axi-symmetric initial data. Then the three-dimensional Navier-Stokes equations have globally (in time) strong solution corresponding to such initial data. Moreover, such strong solution remains axi-symmetric.

Theorem (Leiboviz, Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes equations in an infinite Pipe. Let

$$\vec{u}_0 = (\varphi_r^0(r, n\theta + \alpha z), \varphi_\theta^0(r, n\theta + \alpha z), \varphi_z^0(r, n\theta + \alpha z))$$

(Helical symmetry). For such initial data we have global existence and uniqueness. Moreover, such a solution remains helically symmetric.

Remarks

- For axi-symmetric and helical flows the vorticity stretching term is nontrivial, and the velocity field is three-dimensional.
- In the inviscid case, i.e. v=0, the question of global regularity of the three-dimensional helical or axi-symmetrical Euler equations is still open. Except the invariant sub-spaces where the vorticity stretching term is trivial.

Theorem [Cannone, Meyer & Planchon] [Bondarevsky] 1996

Let M be given, as large as we want. Then there exists K(M) such that for every initial data of the form

$$\vec{u}_0 = \sum_{|\vec{k}| \ge K (M)} \vec{\hat{u}}_{\vec{k}}^0 e^{i\vec{k} \cdot \vec{x} \frac{2\pi}{L}}$$
 [VERY

[VERY OSCILLATORY]

the three-dimensional Navier-Stokes equations have global existence of strong solutions.

Remark Such initial data satisfies

$$||u_0||_{H^{\frac{1}{2}}} << 1.$$

So, this is a particular case of Kato's Theorem.

The Effect of Rotation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} + \nabla p + \vec{\Omega} \times \vec{u} = 0$$
$$\nabla \cdot \vec{u} = 0$$

- There is $\Omega_0(T, \vec{u}_0)$ such that if $|\Omega| > \Omega_0$ the solution exists on [0, T).
- That is there exists T_0 ($\vec{u}_{0,}|\vec{\Omega}|$) such that the solution exists on $[0,T_0)$. Observe that

$$T_0 \to \infty \text{ as } \left| \vec{\Omega} \right| \to \infty$$

- Babin Mahalov Nicolaenko.
- Embid Majda.
- Chemin, Ghalagher, Granier, Masmoudi,...
- Liu and Tadmor.

An Illustrative Example

Inviscid Burgers Equation

$$u_t + uu_x = 0 \text{ in } R$$
$$u(x,0) = u_0(x)$$

•If $u_0(x)$ is decreasing function on some subinterval of R then the solution of the above equation develops a singularity (Shock) in finite time.

The solution is given implicitly by the relation:

$$u(x,t) = u_0(x - tu(x,t))$$

The Effect of the Rotation

$$u \in \mathbb{C} \quad z \in \mathbb{C}$$

$$u_t + uu_z + i\Omega u = 0$$

$$u_0(z) = u(z,0)$$

$$v(z,t) = e^{i\Omega t}u(z,t)$$

$$\begin{aligned} v_t + e^{-i\Omega t} v v_z &= 0 \\ v(z,t) &= v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t) \right) \\ \frac{\partial}{\partial z} v &= \frac{v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t) \right)}{1 + \frac{e^{-i\Omega t} - 1}{-i\Omega} v_0 \left(z - \frac{e^{-i\Omega t} - 1}{-i\Omega} v(z,t) \right)} \end{aligned}$$

If $\Omega >> 1$, (i.e. $\Omega > \Omega_0(u_0)$)

 $\frac{\partial}{\partial z}v$ remains finite and the

solution remains regular for all $t \ge 0$.

The above complex system is equivalent to 2D Rotating Burgers:

$$u = u_1 + iu_2, \qquad z = x + iy$$

$$\vec{u}_t + \vec{u} \cdot \nabla \vec{u} + \Omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \vec{u} = 0$$

More generally

•
$$u_t + div F(u) = 0$$
 (Short time existence)

$$\bullet v_t + \underline{\cos(\Omega t)} \ div \ F(v) = 0$$

• $v_t + \underline{\cos(\Omega t)} \ div \ F(v) = 0$ For $\Omega > \overline{\Omega}_0(v_0)$ we have global existence.

Let
$$\tau = \frac{\sin \Omega t}{\Omega}$$
 and denote by $w(\tau, x) = v(t, x)$

Then

$$\begin{cases} w_{\tau} + div \ F(w) = 0 \\ w(x,0) = v_{0}(x) = u_{0}(x) \end{cases}$$

For τ in the interval $-T_*(v_0) \le \tau \le T_*(v_0)$ the solution w

exists. That is whenever
$$t$$
 satisfies $-T_*(v_0) \le \frac{\sin(\Omega t)}{\Omega} \le T_*(v_0)$

Bénard Convection Porous Medium

$$\begin{cases} \gamma \frac{\partial}{\partial t} \vec{u} + \vec{u} + \nabla p - RT\vec{k} = 0 \\ \nabla \cdot \vec{u} = 0 \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial t} T - \kappa \Delta T + (\vec{u} \cdot \vec{\nabla})T = 0 \\ \text{Subject to certain physical boundary conditions.} \end{cases}$$

- P. Fabrie [1986] Global Existence & Uniqueness
- H.V. Ly E.S.T. [1999] $(\gamma = 0)$

Same result based on Galerkin numerical procedure.

This gived leads to Spatial Analyticity, and exponential rate of convergence of the Galerkin procedure.

• M. Oliver and E.S.T. $(\gamma > 0)$

Spatial analyticity of the attractor.

Large Scale Oceanic Circulations

Be'nard Convection/Boussinesq Approximation

$$\begin{split} &\frac{\partial}{\partial t}v_{H}-\upsilon\bigg(\Delta_{H}+\frac{\partial^{2}}{\partial z^{2}}\bigg)v_{H}+(v_{H}\cdot\nabla_{H})v_{H}+w\frac{\partial}{\partial z}v_{H}+\frac{1}{\rho_{0}}\nabla_{H}p+f\ \vec{k}\times v_{H}=0\\ &\frac{\partial}{\partial t}w-\upsilon\bigg(\Delta_{H}+\frac{\partial^{2}}{\partial z^{2}}\bigg)w+(v_{H}\cdot\nabla_{H})w+w\frac{\partial}{\partial z}w+\frac{1}{\rho_{0}}\frac{\partial}{\partial z}p+Tg=0\\ &\nabla_{H}\cdot v_{H}+\frac{\partial}{\partial z}w=0\\ &\frac{\partial}{\partial t}T-\kappa\Delta T+(v_{H}\cdot\nabla_{H})T+w\frac{\partial}{\partial z}T=\rho_{0}Q \end{split}$$

Here $(v_H, w) = \vec{u}$.

Typical Scales in the Ocean

- horizontal distance $L \sim 10^6 \text{ m}$
- horizontal velocity $U \sim 10^{-1} \text{ m/s}$
- depth $H \sim 10^3 \text{ m}$
- Coriolis parameter $f \sim 10^{-4} 1/s$
- gravity $g \sim 10 \text{ m/s}^2$
- density $\rho_0 \sim 10^3 \text{ kg/m}^3$

Calculating the typical values

Typical vertical velocity

$$W=UH/L \sim 10^4 \text{ m/s}$$

Typical pressure

$$P = \rho_0 g H \sim 10^7 Pa$$

Typical time scale

$$T = L/U \sim 10^7 \text{ s}$$

Scale Analysis of Vertical Motion – The Ideal Case

$$\frac{\partial}{\partial t}w + (v_H \cdot \nabla_H)w + w\frac{\partial}{\partial z}w + \frac{1}{\rho_0}\frac{\partial}{\partial z}p + Tg = 0$$

$$\frac{W}{T} + \frac{UW}{L} + \frac{W^2}{H} + \frac{P}{H\rho_0} + Tg = 0$$

$$10^{-11} + 10^{-11} + 10^{-11} + 10 + 10 = 0$$

Hydrostatic Balance

$$\frac{1}{\rho_0} \frac{\partial}{\partial z} p + Tg = 0$$

Scale Analysis – The Ideal Case

$$\frac{\partial}{\partial t} v_H + (v_H \cdot \nabla_H) v_H + w \frac{\partial}{\partial z} v_H + \frac{1}{\rho_0} \nabla_H p + f \vec{k} \times v_H = 0$$

$$\frac{U}{T} + \frac{U^2}{L} + \frac{UW}{H} + \frac{P}{L\rho_0} + UF = 0$$

$$10^{-8} + 10^{-8} + 10^{-8} + 10^{-2} + 10^{-5} = 0$$

Rossby Number

$$R = \frac{U}{F L}$$

Geostrophic Balance

• When R << 1

$$\frac{1}{\rho_0} \nabla_H p + f \vec{k} \times v_H = 0$$

The Ideal Planetary Geostrophic equations

$$\begin{split} &\frac{1}{\rho_0} \nabla_H p + f \ \vec{k} \times v_H = 0 \\ &\frac{1}{\rho_0} \partial_z p + Tg = 0 \\ &\nabla_H \cdot v_H + \partial_z w = 0 \\ &T_t + (v_H \cdot \nabla_H) T + w T_z = \rho_0 Q + \kappa \partial_{zz} T \end{split}$$

Rayleigh Friction and Horizontal-Diffusion

$$\frac{1}{\rho_0} \nabla_H p + f \, \vec{k} \times v_H = F(v_H)$$

$$\frac{1}{\rho_0} \partial_z p + Tg = 0$$

$$\nabla_H \cdot v_H + \partial_z w = 0$$

$$T_t + (v_H \cdot \nabla_H)T + w \partial_z T = \rho_0 Q + \kappa_v \partial_{zz} T + D(T)$$

Friction, Viscosity and Diffusion Schemes

Conventional eddy viscosity

$$F(v_H) = A_v \Delta_H v_H + A_h \partial_{zz} v_H$$
 and $D(T) = \kappa_H \Delta_H T$

Linear drag

$$F(v_H) = -\varepsilon v_H$$

What should be the diffusion operator D?

The Viscous PG Equations

$$\frac{1}{\rho_0} \nabla_H p + f \vec{k} \times v_H = K_v \Delta_H v_H + K_h \partial_{zz} v_H$$

$$\frac{1}{\rho_0} \partial_z p + Tg = 0$$

$$\nabla_H \cdot v_H + \partial_z w = 0$$

$$T_t + (v_H \cdot \nabla_H) T + w T_z = \rho_0 Q + \kappa_h \Delta_H T + \kappa_v \partial_{zz} T$$

The Viscous PG Equations

Weak Solutions

$$T \in C_w([0,T],L^2) \cap L^2([0,T],H^1)$$

Strong Solutions

$$T \in C([0,T],H^1) \cap L^2([0,T],H^2)$$

Results

- Samelson, Temam and Wang (1998)
 - * the existence of the weak solutions, but no uniqueness,
 - * the short time existence of the strong solutions.
- Samelson, Temam and Wang (2000)
 - * global existence of the strong solution if initial data is bounded, i.e. in L^{∞} .

Results

- Cao and E.S.T. (2003)
 - * the uniqueness of weak solutions
 - * the global existence of the strong solutions for any initial data in H^1
 - * existence of the global attractor.
 - * upper bounds for the dimension of the global attractor.

Existence of Global Attractor

- Absorbing Ball B in L² (energy estimate)
- Absorbing Ball B in H¹ (energy estimate and the uniform Gronwall inequality)

$$A = \bigcap_{s>0} \bigcup_{t>s} S(t)B \subset H^1.$$

The Rayleigh Friction Case

$$\frac{1}{\rho_0} \nabla_H p + f \vec{k} \times v_H = -\varepsilon v_H$$

$$\frac{1}{\rho_0} \partial_z p + Tg = 0$$

$$\nabla_H \cdot v_H + \partial_z w = 0$$

$$T_t + (v_H \cdot \nabla_H)T + wT_z = \rho_0 Q + \kappa_h \Delta_H T + \kappa_v \partial_z T$$

Natural Boundary Conditions

no normal flow

$$\vec{v}_H \cdot \vec{n} = 0$$
 on side and $w=0$ when $z=-h, 0$

no heat-flux

$$\frac{\partial}{\partial \vec{n}}T = 0$$
 on the side and

$$\partial_z T = 0$$
 when $z = -h,0$

The no-flow boundary condition

$$\vec{v}_H \cdot \vec{n} \mid_{\Gamma_s} = 0$$
 implies that

$$\frac{\partial T}{\partial \vec{e}}|_{\Gamma_s} = 0$$
 where $\vec{e} = \frac{1}{\sqrt{\varepsilon^2 + f^2}} (\varepsilon n_1 - f n_2, f n_1 - \varepsilon f_2)$

this is in addition to the no-heat flux boundary

condition
$$\frac{\partial}{\partial \vec{n}}T|_{\Gamma_s} = 0$$

Therefore, there are two boundary conditions for the temperature which is governed by a second order parabolic PDE. So it is over-determined, and the problem is ill-posed. This is consistent with the numerical instability observed using this system.

Rayleigh Friction and Temperature Horizontal Hyper-Diffusion Model

We therefore propose the following artificial Horizontal Hyper-diffusion model

$$\begin{split} &\frac{1}{\rho_0} \nabla_H p + f \ \vec{k} \times v_H = -\varepsilon v_H \\ &\frac{1}{\rho_0} \partial_z p + Tg = 0 \\ &\nabla_H \cdot v_H + \partial_z w = 0 \\ &T_t + (v_H \cdot \nabla_H) T + w T_z = \rho_0 Q + \nabla_H \cdot q(T) + \kappa \partial_z T \end{split}$$

With the Boundary Conditions

no normal flow

$$\vec{v}_H \cdot \vec{n} = 0$$
 on side Γ_s , & $w = 0$ when $z = -h$, 0

no heat-flux

 $q(T) \cdot \vec{n} = 0$ on the side and

$$\partial_{\tau} T = 0$$
 when $z = -h,0$

Proposed Artificial Hyper-Diffusion

$$\mathbf{H} = \begin{pmatrix} 1 & -f/\varepsilon \\ f/\varepsilon & 1 \end{pmatrix}$$

$$q(T) = \lambda H \nabla_{H} (\nabla_{H} \cdot (H^{T} \nabla_{H} T)) + \mu \nabla_{H} T_{zz}$$
$$- K_{h} \nabla_{H} T$$

Which is positive definite (dissipative/stabilizing) with the associate boundary conditions.

Hyper Horizontal Diffusion Model

Weak Solutions

$$\vec{u} \in C_w([0,T], L^2), \quad \Delta \vec{u} \in L^2([0,T], L^2)$$

Strong Solutions

$$\nabla \vec{u} \in L^{\infty}([0,T], H^1), \quad \Delta \vec{u} \in L^2([0,T], H^2)$$

Results

- Cao, E.S.T., Ziane (2004)
 - * The global existence and uniqueness of the weak solutions.
 - * The global existence of the strong solutions.
 - * Existence of the global attractor.
 - * Provide upper bounds for the dimension of the global attractor.

Recall Scale Analysis of Vertical Motion –The Ideal Case

$$\frac{\partial}{\partial t}w + (v_H \cdot \nabla_H)w + w\frac{\partial}{\partial z}w + \frac{1}{\rho_0}\frac{\partial}{\partial z}p + Tg = 0$$

$$W \quad I/W \quad W^2 \quad P$$

$$\frac{W}{T} + \frac{UW}{L} + \frac{W^2}{H} + \frac{P}{H\rho_0} + Tg = 0$$

$$10^{-11} + 10^{-11} + 10^{-11} + 10 + 10 = 0$$

Recall Scale Analysis for Horizontal Motion – The Ideal Case

$$\frac{\partial}{\partial t} v_H + (v_H \cdot \nabla_H) v_H + w \frac{\partial}{\partial z} v_H + \frac{1}{\rho_0} \nabla_H p + f \vec{k} \times v_H = 0$$

$$\frac{U}{T} + \frac{U^2}{L} + \frac{UW}{H} + \frac{P}{L\rho_0} + UF = 0$$

$$10^{-8} + 10^{-8} + 10^{-8} + 10^{-2} + 10^{-5} = 0$$

The Primitive Equations of Large Scale Oceanic and Atmospheric Dynamics

$$\partial_{t}v_{H} + (v_{H} \cdot \nabla_{H})v_{H} + w\partial_{z}v_{H} + \nabla_{H}p + f \vec{k} \times v_{H}$$

$$= A_{h}\Delta_{H}v_{H} + A_{v}\partial_{zz}v_{H}$$

$$\partial_{z}p + gT = 0$$

$$\nabla_{H} \cdot v_{H} + \partial_{z}w = 0$$

$$T_{t} + (v_{H} \cdot \nabla_{H})T + wT_{z} = Q + K_{h}\Delta_{H}T + K_{v}T_{zz}$$

Introduced by Richardson (1922)
 For Weather Prediction

• J.L. Lions, R. Temam, S. Wang (1992) Gave Some Asymptotic Derivation of the Model.

Primitive Equations

Weak Solutions

$$\vec{u} \in C_w([0,T], L^2) \cap L^2([0,T], H^1)$$

Strong Solutions

$$\vec{u} \in L^{\infty}([0,T],H^1) \cap L^2([0,T],H^2)$$

Previous Results

- J.L. Lions, Temam, S. Wang (1992), and Temam, Ziane (2003) The global existence of the weak solutions (No Uniqueness).
- Guillen-Gonzalez, Masmoudi, Rodriquez-Bellido (2001), and Temam, Ziane (2003)

The short time existence of the strong solution

- Temam, Ziane (2003) Global Existence of Strong Solution for the 2-D case.
- C. Hu, Temam, Ziane (2003) Global Regularity for Restricted (Large) Initial Data in Thin Domains.

Results

- Cao and E.S.T. Annals of Mathematics (2007) (to appear)
 - * the global existence of the weak solutions (Galerkin method)
 - * the global existence and uniqueness of the strong solutions.
 - * existence of the global attractor.
 - * upper bound for the dimension of the global attractor.

A different formulation of the PE

$$w(x, y, z) = -\int_{-h}^{z} \nabla_{H} \cdot v_{H}(x, y, \xi) d\xi$$

$$p(x, y, z) = p_{s}(x, y) - g \int_{-h}^{z} T(x, y, \xi) d\xi$$

$$\bar{v}_{H}(x, y) = \frac{1}{h} \int_{-h}^{0} v_{H}(x, y, \xi) d\xi, \quad \nabla_{H} \cdot \bar{v}_{H} = 0$$

$$\tilde{v}_{H}(x, y, z) = v_{H}(x, y, z) - \bar{v}_{H}(x, y, z)$$

The Barotropic Mode – The Averaged Part of the Horizontal Velocity

$$\partial_{t} \bar{v}_{H} + \overline{(v_{H} \cdot \nabla_{H})v_{H} + w} \partial_{z} v_{H} + f \vec{k} \times \bar{v}_{H} + \nabla_{H} p_{s}$$

$$= A_{h} \Delta_{H} \bar{v}_{H} + \nabla_{H} \int_{-h}^{z} T dz$$

The Baroclinic Mode –The Fluctuation Part of the Horizontal Velocity

$$\partial_{t}\widetilde{v}_{H} + (\widetilde{v}_{H} \cdot \nabla_{H})\widetilde{v}_{H} + (\widetilde{v}_{H} \cdot \nabla_{H})\overline{v}_{H} + (\overline{v}_{H} \cdot \nabla_{H})\widetilde{v}_{H} + (\overline{v}_{H} \cdot \nabla_{H})\widetilde{v}_{H}$$

$$\overline{(\widetilde{v}_H \cdot \nabla_H)\widetilde{v}_H + (\nabla_H \cdot \widetilde{v}_H)\widetilde{v}}_H =$$

$$A_{h}\Delta_{H}\widetilde{v}_{H} + A_{v}\partial_{zz}\widetilde{v}_{H} + \nabla_{H}\int_{-h}^{z}gT\,d\xi - \nabla_{H}\int_{-h}^{z}gT\,d\xi$$

The IDEA – Focus on Burgers Equation

$$u_{t} - \nu \Delta u + (u \cdot \nabla)u = 0$$

We have

$$\frac{1}{2}\partial_t |u(x,t)|^2 - \frac{1}{2}\Delta |u(x,t)|^2 + \sum_{i,j} \left(\frac{\partial u_i}{\partial x_j}\right)^2 + \frac{1}{2}u \cdot \nabla |u(x,t)|^2 = 0$$

A maximum principle for
$$|u(x,t)|^2$$
 and L^{∞} bound.

Global Regularity for 1D, 2D and 3D Burgers Equation.

The Pressure Term!!

 Is the major difference between Burgers and the Navier-Stokes equations.

What about in our system?

The Averaged Equation is "like" the 2D Navier-Stokes.

$$\partial_{t}\overline{v}_{H} + \overline{(v_{H} \cdot \nabla_{H})v_{H} + w\partial_{z}v_{H}} + f \overrightarrow{k} \times \overline{v}_{H} + \nabla_{H}p_{s}$$

$$= A_{h}\Delta_{H}\overline{v}_{H} + \nabla_{H}\int_{-h}^{z} T dz$$

Where
$$p_s(x, y)!!$$

The Fluctuation Equation is "like" 3D Burgers Equations – Has No Pressure Term!!

$$\begin{split} &\partial_{t}\widetilde{v}_{H}+(\widetilde{v}_{H}\cdot\nabla_{H})\widetilde{v}_{H}+(\widetilde{v}_{H}\cdot\nabla_{H})\overline{v}_{H}+(\overline{v}_{H}\cdot\nabla_{H})\widetilde{v}_{H}+\\ &\left(-\int_{-h}^{z}\nabla_{H}\cdot v_{H}\ dz\right)\partial_{z}\widetilde{v}_{H}+f\ \vec{k}\times\widetilde{v}_{H}-\\ &\overline{(\widetilde{v}_{H}\cdot\nabla_{H})\widetilde{v}_{H}+(\nabla_{H}\cdot\widetilde{v}_{H})\widetilde{v}}_{H}\\ &=A_{h}\Delta_{H}\widetilde{v}_{H}+A_{v}\partial_{zz}\widetilde{v}_{H}+\nabla_{H}\int_{-h}^{z}gT\ d\xi-\nabla_{H}\overline{\int_{-h}^{z}gT\ d\xi} \end{split}$$

A-priori Estimates

$$\bullet \left\| \widetilde{v}_H \right\|_{L^6} \leq K$$

$$\bullet \left\| \nabla_{H} \overline{\nu}_{H} \right\|_{L^{2}} \leq K$$

$$\Rightarrow \|\overline{v}_H\|_{L^6} \leq K$$

$$\Rightarrow \left\| v_H \right\|_{L^6} = \left\| \overline{v}_H + \widetilde{v}_H \right\|_{L^6} \leq K$$

Q.E.D.

One of the Main Estimates Used

$$\begin{split} & \left| \int_{\Omega} \left[\left(\int_{-h}^{0} u(x,y,z) \, dz \right) f(x,y,z) \, g(x,y,z) \right] dx dy dz \right| \\ & \leq C \| u \|_{L^{2}(\Omega)}^{1/2} \| u \|_{H^{1}(\Omega)}^{1/2} \| f \|_{L^{2}(\Omega)}^{1/2} \| f \|_{H^{1}(\Omega)}^{1/2} \| g \|_{L^{2}(\Omega)} \end{split}$$

Back to The 3D Navier-Stokes Equations

$$\frac{\partial}{\partial t}\vec{u} - \upsilon\Delta\vec{u} + (\vec{u}\cdot\nabla)\vec{u} + \frac{1}{\rho_0}\nabla p = \vec{f}$$

$$\nabla \cdot \vec{u} = 0$$

New Criterion for Global Regularity of the 3D Navier-Stokes Equations

Theorem (C. Cao and E.S.T. 2005):

The strong solution of the 3D Navier - Stokes

equations exists on the the interval [0, T] for as long as

 $\partial_{\tau} p \in L^{r}((0,T),L^{s}(\Omega))$, where r > 3 and s > 2.

This is different that the result of Y. Zhou (2005) where the assumption is on ∇p .

Inviscid Regularazation of the 3D Euler Equations

$$-\alpha^2 \Delta \frac{\partial}{\partial t} \vec{u} + \frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} + \frac{1}{\rho_0} \nabla p = 0$$

$$\nabla \cdot \vec{u} = 0$$

Modified Energy

$$\int (|u(x,t)|^2 + \alpha^2 |\nabla u(x,t)|^2) dx = \text{const.}$$

Inviscid Regularization of the Surface Quasi-Geostrophic

$$-\alpha^2 \Delta \theta_t + \theta_t + u \cdot \nabla \theta = 0$$

$$u = \nabla^{\perp} (-\Delta)^{-1/2} \theta$$