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Rayleigh Be'nard Convection /
Boussinesqg Approximation

 Conservation of Momentum
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* |Incompressibility
V-u=0

* Heat Transport and Diffusion
%T —i AT +(U-V)T =0



Temperature Estimates

 Maximum Principle
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 Gradient Estimates
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 Estimate of the Nonlinear Term

H(U-V)T . ATdx

 Interpolation/Calculus Inequality
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To answer this question we have to deal
with the Navier-Stokes equations.



The Navier-Stokes Equations
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V-u=0

Plus Boundary conditions, say periodic in the box

Q=[0, LT’



- We will assume that g, =1

Denote by (¢ )= IQ o (X)dx

Observe that if <UO> = < 1?> =0 then <LT> = 0.

Poncare’ Inequality
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Sobolev Spaces
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Navier-Stokes Equations Estimates

 Formal Energy estimate
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2 dt

. Observe that since V U = 0 we have

—[a’, L2+j(u V)i - u+_[Vpu (f U)

j(ﬁ-V)ﬁ-ﬁdx :ij-de =0

1 d
= Hu
2 dt

= (7.0




By the Cauchy-Schwarz and Poincare’ inequalities
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By Poincare’ inequality
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By Gronwall’s inequality
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Theorem (Leray 1932-34)

Forevery T>0 there exists a weak solution
(in the sense of distribution) of the
Navier-stokes equations, which also satisfies

U €C,([0,T], L'(€))NL([0, T], H*(€Y)

The uniqueness of weak solutions in the three
dimensional Navier-Stokes equations case is
still an open question.



Strong Solutions of Navier-Stokes
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Formal Enstrophy Estimates
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2 dt
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Observe that | Vp-(—Al)dx=0
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By Holder inequality
‘, (G- V)i -(—Au)‘sHu L[V . Ad] .




Calculus/Interpolation (Ladyzhenskaya)

Inequatlities
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The Two-dimensional Case

T
y<cy® & [y(r)dr <K(T)
0

= y(t) <K(T)

Global regularity of strong solutions to the
two-dimensional Navier-Stokes equations.



Navier-Stokes Equations

e Two-dimensional Case

* Global Existence and Uniqueness
of weak and strong solutions

* Finite dimension global attractor



The Three-dimensional Case

.
Recallthat Y=¢,+ HVU 2

4
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One can show that y < C(HU

Which implies that
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The Question Is Again Whether:
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One can instead use the following Sobolev inequality

[dll,s <c|val
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Which leads to y<cy® & j v(r)dr <K
0

Theorem (Leray 1932-1934)

There exists ”I;(|UO 1? D, |_) such that
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Navier-Stokes Equations

* The Three-dimensional Case
* Global existence of the weak solutions
* Short time existence of the strong solutions
* Uniqueness of the strong solutions

» Open Problems:
* Uniqueness of the weak solution
* Global existence of the strong solution.



Vorticity Formulation
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The Three-dimensional Case
(w-V)U£0

o~ Z
(0-V)Ui ~z°

For large initial data (7)0 the vorticity balance takes
the form

7 ~72 =  Potential “Blow Up”!!



Euler Equations p = ()

e Three-Dimensional case

T, (U,) such that we have existence
and uniqueness on [0, T,).

e Beale-Kato-Majda
T

it ] e (0
0

unigueness on the interval [0, T]
e That is, one has to “control’ the HC?) (t)

- At < 0 4han we have existence and

LOO
In some way!!



« Constantin and Fefferman:

Provided sufficient condition involving the Lipschitz
regularity of the direction of the vorticity:
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Two-Dimensions Euler

e Yudovich proved a weak version of the

maximum principle, that is Ha)(t)
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Special Results of Global Existence for
the three-dimensional Navier-Stokes

Theorem (Kato)

Let |||, be small enough . Then the 3D

Navier - Stokes equations are globally
well - posed for all time with such initial
data. The same result holds if the initial data

issmall in L°(Q) (Kato, Giga & Miyakawa)



tz
-+
e O — Revolution Domain around the z - axis
[away from z - axis]

* Let us move to Cylindrical coordinates

Theorem (Ladyzhenskaya) Let
Uy (X, Y,2) = (7 (r,2), 9, (r, 2), 9, (r, 2))

be axi-symmetric initial data. Then the three-dimensional
Navier-Stokes equations have globally (in time) strong solution
corresponding to such initial data. Moreover, such strong solution
remains axi-symmetric.



Theorem (Leiboviz, Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes
equations in an infinite Pipe. Let

U, = (¢, (r,n0+az),p,(r,n0+az),e.(r,n0+az))

(Helical symmetry). For such initial data we have
global existence and uniqueness. Moreover,
such a solution remains helically symmetric



Remarks

» For axi-symmetric and helical flows the vorticity
stretching term is nontrivial, and the velocity
field is three-dimensional.

 In the inviscid case, i.e. v=0, the question of
global regularity of the three-dimensional helical
or axi-symmetrical Euler equations is still open.
Except the invariant sub-spaces where the

vorticity stretching term is trivial.



 Theorem [Cannone, Meyer & Planchon]
[Bondarevsky] 1996

Let M be given, as large as we want. Then there exists
K(M) such that for every initial data of the form

- L2
7\’0 Ik.XT
U, = E u-¢€ [VERY OSCILLATORY]
M

‘IZ‘ZK( )

the three-dimensional Navier-Stokes equations have global
existence of strong solutions.

Remark Such initial data satisfies  |U,l| , % << 1.

So, this is a particular case of Kato’s Theorem.



The Effect of Rotation

aa—l:+(J-V)J+Vp+ﬁxU=O

V-u=20

e Thereis Q, (T, ) such thatif | > Q, the solution

existson [0, T).
e That is there exists T, (UO,‘Q‘) such that the solution
existson [0, T,). Observethat

T, > as ‘Q‘ —> o0

¢ Babin - Mahalov- Nicolaenko.
e Embid- Majda.
e Chemin, Ghalagher,Granier, Masmoudi,...
e Liuand Tadmor.



An lllustrative Example

Inviscid Burgers Equation
u +uu, =0 In R
U(X,O) — uO(X)

olf U,(X) is decreasing function on some subinterval
of R then the solution of the above equation develops
a singularity (Shock) in finite time.

The solution is given implicitly by the relation:
u(x,t) =u,(x—-tu(x,t))



The Effect of the Rotation

ueC zeC
U, +uu, +1Qu =0
Uy (2) =u(z,0)

v(z,t) =e"'u(z,1)



v,+e w, =0

v(z,t) =V, (z v(z 1))
A e_'m ex)
V= —iQt —|Qt
2T v(')(z v(z t))




If Q>>1,(l.e. Q>Q,(Uu,))

Ev remains finite and the

OZ
solution remains regular for all t>0.



The above complex system is
equivalent to 2D Rotating Burgers:

U=u,+Iu,, zZ=X+Iy

‘0 —1)
1 0




More generally

eU, +divF(u)=0  (Shorttime existence)
oV, +cos(Qt)divF(v)=0

For Q > Q,(v,) we have global existence.

Let 7 = stQt and denote by w(z, X) = v(t, X)

Then
w_+divF((w)=0
{W(X’O ) = Vo (X) = Uy (X)
For 7z in the interval —T,(v,) <7 <T,(v,) thesolution w
sin(€2t)
Q

exists. That is whenever t satisfies —T, (v,) < <T,(v,)



Bénard Convection Porous Medium

y%u +U+Vp-— RTk =0

V-ui=0

<0

—T kAT +(0-V)T =0
ot

Subject to certain physical boundary conditions.
. P Fabrie [1986] Global Existence & Uniqueness

* H.V. Ly E.S.T.[1999] (y=0)
Same result based on Galerkin numerical procedure.

This gived leads to Spatial Analyticity, and exponential rate
of convergence of the Galerkin procedure.

M. Oliver and E.S.T. (¥ >0)

Spatial analyticity of the attractor.



Large Scale Oceanic
Circulations






60°

LA | )ahradm [Oyashio
m/ ; N.Atlantic .
- ' Crift 2 N. Pacific
30° Gulf Stream 2
' | Ca
Calif':lmia . naw HU[UE'"I.KJ
, N.Equatorial |
- L/ s —Equatorial N Equatorial | 3
< orh Equatorial_~ ) Counter ~i 4__q_______ - N.Equatorial
’ Equatorial ___—pr - . , —y_
0 — ECHJHT.EY w 3. Equatorial iﬂm - R .
South E4 A Equatorial a ,
- W Australiaf ; .
30° Peru Brazil Benguela | E Australia
- Maz ambique ’ .
5 , |,aﬁ ! i
South Pacific gouth ptlantic 5;,%““'3 -
60° - ﬁntamﬂcﬂimun‘-pﬂlﬁr > — Antarctic Circumpolar >

e S oS ——— —

Robinson Projection

E— —
Warm Current Cold Current



Be'nard Convection/Boussinesq
Approximation

0 0° 0 1 ~
avH —U| A, +? vy, +(Vy V)V, +WEVH +—V,p+Tfkxv,=0

£

2
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Z
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0
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Here (v,,w)=U.



Typical Scales in the Ocean

6
« horizontal distance L ~10°m

- horizontal velocity U ~10" m/s

. depth  H~10°m

« Coriolis parameter f ~107 1/s

+ gravity g ~10 m/s?
» density Oy ~ 10° kg/m3



Calculating the typical values

« Typical vertical W=U H/|:—]_()4 m/s

velocity
 Typical pressure P— Jo) g|-|~1d P3

. Typical time scale  T=L/U~10"s



Scale Analysis of Vertical Motion —
The Ideal Case

QW—F(VH -VH)W—FWQW—I—LE p+Tg=0
ot oz  p, 0L
2
w+UW+W + il +1g=0
T L H Hp,

10" +10" +10™ +10+10=0




Hydrostatic Balance

1 0
Py O

p+Tg=0



Scale Analysis — The |deal
Case

QVH +(v, -V vy ergvH +iVH p+f kxv, =0

ot oz Po
2

U+U +UW+ i +UF=0

T L H Lp,

10°+10°+10°+10°+10° =0




Rossby Number
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Geostrophic Balance

- When R <<1

iVHerfIvaH =0

£



The ldeal Planetary Geostrophic

equations
1 .
—V,p+fkxv, =0
Lo
1
—0,p+Tg=0
Lo

V,-v,+0,w=0
T.+(v, -V, )T +WT, = p,Q+x0,,T



Rayleigh Friction and Horizontal-

Diffusion
1 ~
—V,p+fkxv,=F(v,)
£
iaszrngO
£

Vv, +0,w=0
Tt +(VH °VH )T _I_WazT — /OOQ_I_KvazzT + D(T)



Friction, Viscosity and Diffusion
Schemes

e Conventional eddy viscosity
|:(VH):'A\/AHVH +AhaszH and D(T)ZKHAHT

* Linear drag
F(vy)=—evy,

What should be the diffusion operator D?



The Viscous PG Equations

iVH p+f kxv, =K A v, +K ., v,

£

i8Zp+Tg:O

£
V,-v,+0,w=0

T+, -V )T+WT =p,Q+xA,T+x,0,T



The Viscous PG Equations

Weak Solutions
T eC. ([0, T],LY)NL([0, T], HY)

Strong Solutions

T eC([0, T],HHNL([0, T],H?)



Results

« Samelson, Temam and Wang (1998)
* the existence of the weak solutions,
but no uniqueness,
* the short time existence of the strong solutions.

« Samelson, Temam and Wang (2000)
* global existence of the strong solution if
initial data is bounded, i.e. in L™,



Results

« Caoand E.S.T. (2003)

* the uniqueness of weak solutions

* the global existence of the strong solutions for
any initial data in H*

* existence of the global attractor.

* upper bounds for the dimension of the global
attractor.



Existence of Global Attractor

. Absorbing Ball Bin L* (energy estimate)

» Absorbing Ball Bin H' (energy estimate and
the uniform Gronwall inequality)

A= Js®)B < H"

s>0 t>sS



The Rayleigh Friction Case

iVH p+ f kxv, =—ev,

£
ic’?ZerngO
£

Vv, +0,w=0

T+, V)T +WT =p,Q+x,A,T+x,0,T



Natural Boundary Conditions

* no normal flow

V.-f=0 °onsideand  \w—0 when z=-h 0

 no heat-flux

on the side and

91
on
0,T =0 whenz=-h,0



The no - flow boundary condition
Vi, -N |, =0 1mpliesthat

O_T - =0 where € = . (en, — tn, fn, —&f,)
oe \/52 +f° |
thisisin addition to the no - heat flux boundary
condition QT =0

on °

Therefore, there are two boundary conditions for the
temperature which is governed by a second order
parabolic PDE. So it is over-determined, and the
problem is ill-posed. This is consistent with the
numerical instability observed using this system.



Rayleigh Friction and Temperature
Horizontal Hyper-Diffusion Model

We therefore propose the following artificial Horizontal
Hyper-diffusion model

iVH p+ f IZxVH = —&V,
Lo

1

—0,p+Tg =0

Lo

VH .VH +aZW: O
T+ (V- V)T +WT, = pQ+Vy, - q(T) +40,,T



With the Boundary Conditions

* no normal flow
V,-i=0 onside I' , & w=0when z=-h,0
 no heat-flux

q(T)-fA = 0 on the side and

0,1 =0 when z=-h,0



Proposed Artificial Hyper-Diffusion
1 -fle
H =
(f/g 1 j
q(T)=AHV, (V, '(HT Va ) +uvy, T,
-K, VvV, T

Which is positive definite (dissipative/stabilizing) with the
associate boundary conditions.



Hyper Horizontal Diffusion Model

Weak Solutions

ieC ([0,T],12), Aldel’([0,T],L)

Strong Solutions

Vi e ([0, T],HY), Al e LA([0,T],H?)



Results

« Cao, E.S.T., Ziane (2004)

* The global existence and uniqueness of the
weak solutions.

* The global existence of the strong solutions.

* Existence of the global attractor.

* Provide upper bounds for the dimension of the
global attractor.



Recall Scale Analysis of Vertical
Motion —The Ideal Case

QW—F(VH -VH)W—FWQW—I—LE p+Tg=0
ot oz  p, 0L
2
w+UW+W + il +1g=0
T L H Hp,

10" +10" +10™ +10+10=0




Recall Scale Analysis for Horizontal
Motion — The |Ideal Case

QVH +(v, -V vy ergvH +iVH p+f kxv, =0

ot oz JoX
2

U+U +UW+ i +UF=0

T L H Lp,

10°+10°+10°+10°+10° =0




The Primitive Equations of Large
Scale Oceanic and Atmospheric
Dynamics

OV, +(V, -V )V, +Wo. v, +V, p+ fkxv,
=AA, vV, +A0,V,

o,p+gT =0

V,vy+0,w=0

T.+(vy, -V )T +WT, =Q+K A, T+K,T,



e Introduced by Richardson (1922)

For Weather Prediction

e J.L.Lions, R. Temam, S. Wang (1992)
Gave Some Asymptotic Derivation of the
Model.



Primitive Equations

Weak Solutions

i eC,,([0,T], B ([0, T], H)

Strong Solutions

Uel”(0T],H) |L(0.T],H)



Previous Results

 J.L. Lions, Temam, S. Wang (1992), and Temam, Ziane (2003)
The global existence of the weak solutions (No Uniqueness).

 Guillen-Gonzalez, Masmoudi, Rodriquez-Bellido (2001), and Temam,
Ziane (2003)

The short time existence of the strong solution

 Temam, Ziane (2003)
Global Existence of Strong Solution for the 2-D case.

e C. Hu, Temam, Ziane (2003)
Global Regularity for Restricted (Large) Initial Data in Thin Domains.



Results

e Cao and E.S.T. Annals of Mathematics
(2007) (to appear)

* the global existence of the weak solutions
(Galerkin method)

* the global existence and uniqueness
of the strong solutions.

* existence of the global attractor.

* upper bound for the dimension of the
global attractor.



A different formulation of the PE

V\(X1 Y; Z) :_fth 'V H(X1 yié:) dé:
p(x,y,2) =P, (%, Y) -] T(xy,&)dé

Viy (xy) :%thH (X y,6)ds, ViV, =0
Vi, (%, Y, 2) =V, (X, Y, 2) =V, (X, Y)



The Barotropic Mode — The
Averaged Part of the Horizontal
Velocity

OV, +(V, -V v, +Wo v, +f IZ><\7H +V,, P

=AAV,+V, _hT dz



The Baroclinic Mode —The
Fluctuation Part of the Horizontal
Velocity

at\7H +(\7H Vi )\7H +(\7H Vi)l +(V, -V, )\7H T

(—rhVH -V, dz) OV, + T kxV, —

O VW +(V, V)W, =

AAT +AST, +V, | gTdE-V, [ gTdé



The IDEA — Focus on Burgers
Equation

u —vAu+Uu-vViu=20
We have

2:O

2
1 2 1 2 ou. 1
Eat\u(x,t)\ —EA\u(x,t) +.Z,: [67} +ou Viu(x,t)

J

2 00
A maximum principle for ‘U(X,t)‘ and L™ bound.

Global Regularity for 1D, 2D and 3D Burgers Equation



The Pressure Term!!

* |s the major difference between Burgers
and the Navier-Stokes equations.

* What about in our system?



The Averaged Equation is “like” the
2D Navier-Stokes.

OV, +(V,, -V V., +WO v, + f kxV, +V,,p,

=AA\V,+V, th dz

Where P (X, y)”



The Fluctuation Equation is “like”
3D Burgers Equations — Has No
Pressure Term!!

ﬁth +(\7H 'VH)VH +(\7H°VH)\7H +(\7H 'VH)VH T

(—fth v, dzj 0. +fKxi, -

(\7H 'VH)VH "’(VH '\7H )\7H

= AAGT + AT, +Vy | gT dE-V,, | oT dg




A-priori Estimates




One of the Main Estimates
Used

1o [(° u(xy.2)dz) f(x.y.2) g(x.y.2) bixdydz
<ClUIEZ 1T o I 2 I 12 10 e

L?(Q) HY(Q) L (Q) HY(Q)



Back to The 3D Navier-Stokes
Equations

G0-V)d Vp=f
p (U-V) o p




New Criterion for Global Regularity
of the 3D Navier-Stokes Equations

Theorem (C.Cao and E.S.T. 2005)
The strong solution of the 3D Navier - Stokes
equations exists on the the interval [0, T] for as long as

0,peLl ((0,T),L(Q)), wherer >3and s > 2.

This is different that the result of Y. Zhou (2005) where the
assumptionison V p.



Inviscid Regularazation of the
3D Euler Equations

—aZAgU+£U+(U-V)U+in =0
ot ot JoX

V. .u =20



Modified Energy

J(\U(X,t)\2 +a?[Vu(x,t)|")dx = const.



Inviscid Regularization of the
Surface Quasi-Geostrophic

~a’AO +0,+u-VO=0

L=V Ay 20



