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Example Dimension Reduction when many coupled oscillators

“Classical” Analysis
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Example Dimension Reduction when many coupled oscillators

What model reduction/cooperation is here?!
In this signal?
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-Cooperation and model reduction and many acting as one. Or as a few, In clusters.

-And communities/partition/signals this tool is about the nonlinear averaging with respect
to the appropriate partition and within, appropriate invariant manifold.

-agent model/swarm/Infectious Disease Dynamics.

-Hierarchical



We have networks, and then we have dynamics on Networks

Partition is key to begin the discussion of appropriate “averages”
— nonlinear “average” meaning error from an invariant manifold
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Appropriate partition partition, from which follows model reductions
(sometimes dramatic simplification)

Which course grained scale is right?
Each: Simplify as appropriate.

-Coarse — Grained Models

-Hierarchical

-Russian Doll of Hierarchical Models

-Jie Sun, Erik M. Bollt, and Takashi Nishikawa, "Master Stability Functions for Coupled Near-ldentical Dynamical System," arXiv:
0811.0649, To appear Euro. Phys. Lett. (2009).



Multi-scale Dynamics: Motivation sége
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Perhaps a hierarchy of models/dynamical systems is appropriate, each
available depending on the setting

J.P. Bagrow, E. M. Bollt, "A Local Method for Detecting Communities," cond-mat/0412482, Phys. Rev. E, 72 046108 (2005).



Two Themes here: The problem of model reduction requires
comparison between the original model

I. What is model and the reduced order model in some

reduction/dimension reduction? appropriate ways.

-Series Truncation? For high dimensional chaotic system, direct
comparison of two models is problematic —

-Existence of a slow manifold? Even slight differences might cause
considerable structural difference between

-Inertial Manifold? orbits generated by the models

respectively — not to mention Sens. Dep.
-Synchronization/cooperation?

Il. How do | know if | did a good job?
-Error in a Banach space? —Residual.

-Conjugacy/Diffeomorphism?
-Shadowing time?



For a given high-dimensional system, there are often many
different low-dimensional reduced models.

-For example, is it better to simply average the equations for individual units to
obtain a reduced model for a coupled oscillator network,

-Or is it better to use a weighted average of the oscillator dynamics reflecting
their various roles within the network?

-Would it be better to introduce an extra component into the reduced model to
compensate for the loss of information due to dimensionality reduction?

To properly answer such questions, it is desirable and necessary to QUANTIFY
the quality of a reduced model for a given system.

The difficulty comes partly from the fact of systems of different dimensions,
making unnatural direct comparisons of either equations of motion or time
series. Not to mention sensitive dependence to initial conditions.



A Dozen Slides or So
to tell you what | am not talking about...



I. What is model reduction/dimension reduction? i = o,
sin(xs) — azg — x5 + 1,

Example Dimension Reduction when slow manifold i; =1,
— Duffing on a paraboloid. )=

E
s . ., 6

Looking for equations of motion in fewer variables in intrinsic coordinates
s'=f(s)=F(s,H(s))

Two-dimensional lsomap (with ei graph).

Lh

Erik Bollt, "Attractor Modeling and Empirical Nonlinear Model Reduction of Dissipative Dynamical Systems," International Journal of
Bifurcation and Chaos (IJBC) in Applied Sciences and Engineering, Vol. 17, No. 4 (2007) 1199-1219.



-Example Dimension Reduction when Series truncation.

Kuramoto—Shivasinky equations
up = (u?)g — Ugy — Vligggs, T € 0, 27],

periodically extended, u(x,t) = u(x + 2w, 1)

an ODE in a Banach space as follows

o0
C ) — ik . 7,
u(z,t) = Y b(t)e™ . Assuming a real u forces by, = by.
k=—oc0
Restricting to pure imaginary solutions yields, by =
iap for real a; gives,

o0
ap = (k2 — I/k.4)a.k. + 1k Z A CAle—mm -
k‘:—OO

and restricting to odd solutions, u(x,t) = —u(—x,1)
gives a_j, = ag. Finally, for computational reasons,
it is always necessary to truncate at the Nth term,
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Fig. 12. (a) Projection of the data of the KS ODE equations Eq. (51) onto three a1, ao,as. (b) Results of the ISOMAP
algorithm embedding the data in three intrinsic variables.



Example Dimension Reduction when many coupled oscillators
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Jie Sun, Erik M. Bollt, Takashi Nishikawa, "Constructing Generalized Synchronization Manifolds
by A Manifold Equation ," SIAM J. Appl. Dyn. Syst. Volume 8, Issue 1, pp. 202-221 (2009).



Complete and Nearly Sync.
Complete Sync. of Coupled Oscillator Network

oscillator network: coupled dynamical systems

A = [ag™"

graph Laplacian
L = [li]**"

n
lii = E Qij
j=1

lij = —aq; (i # J)

14



Complete Synchronization: Master Stability Functions

Master Stability Functions

N
w; = fw;) —g Y li;H(w;) ¢t=12,..,N.)
J

sync. dynamics: s = f(s)

variational eqgs:

For err from N

Ident sync manif 1j; = Df(s)n; —g » _ li;DH(s)n;
j=1

Ni =w; — S

Decouple the variational equations: I = VAVT
A =diag[h, .. An] V= |vq,..., 0] D= < <. <Ay

V; = ['Ulz'a'UZi; ---,’Um]T

Change of variables: (i = v1im + veine + ... + Uit

Gi = |Df(s) — g\DH(s) |G
L. M. Pecora and T. L. Carroll,

“Master Stability Functions for Synchronized Coupled Systems” Phys. Rev. Lett. 80, 2109 (1998).,

15



Complete Synchronization: Master Stability Functions

Coupled Dynamical System

Coupled Network Dynamics

+g[(z2 — z3) + (T4 — z3)]
+9[(y2 — y3) + (Y4 — y3)]

T3 = —Y3 — 23
?Js — T3 + O2y3
2'.3 = 02 + Z(CL’3 — C3)
C—, ~— —_ —
Network
®—
- - \
- -
/
T1 = —Y1— 2 +g(x2 — 1)
Y1 = x1 + ayn +g(y2 —11)
Z1= b+z(xy—c) “+g(zo—2)

A bunch of coupled Rosslers

16

4

+9[(z2 — 23) + g(24 — 23)

Coupling Function

H([:I),y, Z]’) = [ma Y z],'

Graph Laplacian

1 -1 0 O
-1 3 -1 -1
o -1 2 -1
0O -1 -1 2




Nearly Sync.: Generalized MSF's

Generalized Master Stability Functions

Generalized master stability equations (GMSE):

{=|Df(s)—a-DH(s)|E+¢  peRr™
73:%2“’%‘)"‘(7 — S$=f(s)+q
Generalized master stability functions (GMSF):

GMSF: Qa(a, ) = hm sup / 1€(T)| |2d'r

T—00 ¢>T
1 [* 1/2 /2
Tll_I&}f;lg (t /o ez(T)d'r) < —[ZQ (i, i) ]
where:

o; =gA and @i = [’vff ®Im] oq

-Jie Sun, Erik M. Bollt, Takashi Nishikawa, "Constructing Generalized Synchronization Manifolds by A Manifold Equation ," SIAM J. Appl. Dyn. Syst. Volume 8,
Issue 1, pp. 202-221 (2009).

-Jie Sun, Erik M. Bollt, and Takashi Nishikawa, "Master Stability Functions for Coupled Near-Identical Dynamical System," arXiv:
0811.0649, EPL 85 (2009) 60011.



Measuring the sync. error of the system:

Def: the spatial-temporal average error of the system at time t, as:

ea(t) = / [wi(7) — w('r)||2d'r)
Def: A collection of oscnlators wi,...,wyare esynchronized

(w.r.t norm ||.|]) if: (usually choose||.|| as Euclidean norm.)

lim supex(t) <e

T—oo t>T
: 35 : . : :
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Judging DIMENSION REDUCTION
based on errors?

Complete ‘ (4) () o
Synchronization Jim f[wg™ —w ][ =0, VZ,J-\

Linear Methods

Nearly Synchronization limsup ||w§i) — || = 0, /
t

Nonlinear
Methods

Generalized ' A _ , et
Synchronization tliff}o ”h’( )(wg )) - h(J)('w?))H — 0, Vi, j.

 ——

-Is it too much to ask that the error goes to zero in some
measure?

-Maybe we should just ask that the model creates plausible data?



Il. How do | know if | did a good job?
JUDGING MODEL REDUCTION

Two steps:

1) Measuring the loss of information due to dimensionality reduction of the time
series,
-Residuals relative to some model reduction manifold - PCA/POD or ISOMAP
2) Measuring how good the reduced system is as a model for the reduced time
series.
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Shadowing lllustration

_--.- 5 _-'.- ® ¢ b
L] i L] 7 (1
“... p I“}f |I iy I||.|r | | '..___. '-._h.'.__. f I||_|‘r § -h K
J i i h i
; _. i , .' i I'\"\i -..1 i
1 i I [ — 2 T e S
i i p—— i , o=
.\". I ! 8 'l & |# girireliniriey orint
'.\. o F I-\. 7 . i ] [ e .I. [ | I
% , % ¥ % ¥
'\'. .-'- H‘"\.‘_ .\'.\_ : I| \-. .-'.
. . ", ) | j w a*

Il. How do | know if | did a good job?
Two Themes here:

-Data is reproducible in the sense of “shadowable for a long time.”

-We judge model based on optimal shadowing distance.

-D. V. Anosov, Proc. Steklov Inst. Math 90 (1967).

-R. Bowen, J. Diff. Egns. 18, 333 (1975).

-S. M. Hammel, J. A. Yorke, and C. Grebogi, Bull. Amer. Math. Soc. 19, 465 (1988).

-C. Grebogi, S. M. Hammel, J. A. Yorke, and T. Sauer, Phys. Rev. Lett. 65, 1527 (1990).
-K. Palmer, Shadowing in Dynamical Systems: Theory and Applications (Springer, 2000).



SHADOWING

Shadowing Example

0.5]

0

Pe+1 = 4pi(1 — pt) + ¢ noisy orbit & ~ 271

zio1 = 42:(1 — z;) true orbit with same
initial condition

P = 2z; = 0.872486372083970...
s;+1 = 4s4(1 — s;)true orbit with a magic initial condition

0
10 e
s; = 0.872375078713858... " P TR, R S
107} |
-4 UL AMEY
10 lz-p| . Is-p|
-6 : )
e 0 10 20 30 40 50



define optimal shadowing distance €,y
€opt = Inf sup||z; — py
opt = inf sup|z, — p],

where {z;}}_, is the trajectory of the reduced model

—_ d
Ty = f(CL’t), zy € D CR 0.5 I
(@) '
. . . T=10000 *
{p:}i_, is the reduced time series 0.4} :
I T=100
0.3} :
Optimal shadowing — 7>
0.2l distance :
O . i € I
how long the model is valid. o _
0.11 , Stepwise error |
. : l
0
-0.01 -0.005 0 0.005 0.01
. AQ
15x10 | '
10 | (b) Difference in rotation number
5..
0
-5 - ‘ ;
-0.01 -0.005 0 0.005 0.01

pt+1 = pt + Q2 — 0.12sin(27p:) with Q = 0.35



Case1 aV) = a™

xi?l—f(:c ' —O'Z:lzgf(x(J) al?), \__>_3/_\K‘\’ \

Cube2 a(1)~,,,~a(n)

(n x d)-dimensional cnmplex system, S

1. If the oscillators are identical, in what sense can we

model the network by a single oscillator? ..
y & lim; 00 ||x§ —xt7)|| — 0

2. If the oscillators are non-identical, in what sense can
we model the network by a single oscillator?

3. In what sense can we model a nearly synchronized clus-
ter in the network by a single oscillator?

a single oscillator model may not exactly represent the true collective
behavior of the coupled system.

choose the average trajectory z; = Zimgi}fﬂ as a low dimensional representation



), = f(z”,a® —ozluf 27 a),

(n x d)-dimensional cnmplex system,

a single oscillator model may not exactly represent the true collective
behavior of the coupled system.

choose the average trajectory z; = ) _. mgﬂfﬂ as a low dimensional representation

§ : i E : r (1) (4
xt-{-l — f { )a a'(Z) lZJSgt page magniﬁ"catior

zjl

witha = ) _, a'? /n, one obtains s¢+1 = f(s¢,a)

Even in a situation where the oscillators are nearly identical and nearly synchronized
limsup, ||zt” — Z|| = 0,
error can accumulate over time and depend critically on the distribution of heterogeneity

optimal shadowing distance €, provides a quantitative measure



Erdés-Rényi 1000 nearly synchronized logistic maps
flz,a) = ax(l — x) 13.9998, 4]

VI f (@, 0) — Eea]?/T.

VS

Optimal shadowing

€opt distance & opt

Stepwise error

10—1 -0.5 0 0.5 1
Aa x 107
Aa = a — 3.999



Coupled Henon oscillators through an
Erdos-Renyi network (n=200, m=1993).

flws?,a®) = 1+ 4" - a@(z}”)?, bay
Identical: &' =...=a"™ =14,b=0.3
Mismatched: a' ~ N(1.4,0.0013?)
Synchronization Error  {(w(i) — w}=€DR
10° » .
o 5 S N R S M S A St NI I P P N T A

-10/| © identical cése B " :
10 '+ )
mismatched case
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Coupled Henon oscillators through an Erdos-Renyi network (n=500,
m=12348) with outlier. et =..=a"™ =14,b=10.3

Shadowing Error €s

3X 107
g lell_
& okl
@- 2.5
©
g 2
3
v 1.5
4]
i -
m 1
-1 -0.5 0 0.5 1

REFERENCES

-J. Sun, E. M. Bollt & T. Nishikawa, Master stability functions for coupled
nearly identical dynamical systems. EPL 85, 60011 (2009).

-K. Palmer Shadowing in Dynamical Systems: Theory and Applications
(Springer, 2000.)







Coupled Oscillator Network (OSN)

Single oscillator dynamics: ; = f;(0; req11,2,....n »
9 y fi(0:;) (e n}) b‘ i NU i i M

oiEXC]Rm € —mmmm - ———— |
/ N

fi : X — X compact set

1 0 M' ‘ | "w N |
l‘ ,'\’,”.q MM'v-' Rl U1
Coupling function: h.(Oj —0;) Ul WUV ’L” “‘ 7 e
g | it A
hiR™ - R™ suchthat h(0) =0 -~ ﬂj M,"‘"\."' i N,

'.. - -
- - -

Coupled Oscillator Network (OSN)

individual dynamics + coupling function + graph structure
. s !

\ n \\‘ ’,'
;= fi(6:) + 0 > aih(0; - 6;)
’ J=1 R\ l'




Multi-scale Dynamics: an Example OSN

1~10 0; = fi + (IZ a;jsin(f; — 6;)
f; = —3.25 f; = —2.75 j=1
61~70 91~100
21~30 fi = 3.6
fi=-3
31~40
fi = —1.25
71~80 81~90
fi =238 f; =3.2
41~50
i = —=0.75  Kuramoto Oscillators

51~60 oc=0.5
fi=—1 h(z) = sin(x)




Time Series of the Example OSN

100 oscillators
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Model Reduction of an OSN

0; = fi(6 +0'Zazjh

J grouping/partition

er” n
- ~ 1
Py = | E fi(0;) +o E Iel] E a-ijh*(gj — 6;)
“tliecy j=1 "t iec,
I replacing each oscillator by its group average

K

Ve = ge(We) + 0 E berh(vr —1g) ---> average model for group ¢
k=1

gy U[ = U[ average dynamics of group ¥

{ Z

bin =
tk = |C£|

ai; average # edges from group f to group A
1€Cy ECK




B original OSN

_____ . - coarse-
e = 'fjf_(_h‘_ )it o Z_b_“:"’ Vi — i) ,L \I) grained OSN
\ !




Validity of this Model Reduction

original time series
0;(t)3.1416

average by groups ey
de(t)3.1416 1 | ')

0

average model  ©28%7;

produced: (1) 1416 I ‘

0




Clustering from Time Series?

an OSNwith ©0000 00000
edges hidden ©®®®®® ©0O6OO

6.2832

3.1416

time series 0
from OSN 6283




What is a Good Partition?

optimal partition from
graph structure

optimal partition from
time series







Another Example

Partitions represented by
ternary vectors of length 10

Results: 40% *

0 1.9683 3.9366 5.9048

4
x 10
P




Model Reduction of Chaotic Oscillators

0 5 10 15
Is it a good model? What do we mean by ‘good’?




Conclusions, Two Themes here:

. What is model
reduction/dimension reduction?

-Fewer equations that somehow represent the whole.
-Perhaps Hierarchical modeling.

Il. How do | know if | did a good job?
Two Themes here:

-Data is reproducible when shadowable.



