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Why Cluster Biological Networks?

Networks based on protein binding, gene regulation, gene 
redundancy, & metabolic reactions are naturally “modular.”
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Summarize complexity,
pattern mining,

visualization

Associate proteins with
diseases, functions, or 

complexes

Uncover redundant
cellular pathways

Various optimization functions & algorithms have been 
developed depending on the task.



Visualization & Interactive Exploration

Yeast protein interaction network
Clustered (via graph compression) of 
yeast interaction network 

(Navlakha, Schatz, & K., J. Comp. Biol., 2009)Graph Summarization
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Finding Disease-Associated Genes

Small portion of the 
human protein-protein 

interaction network

Proteins known to be 
associated with 

Alzheimer's (OMIM)

Protein-protein 
interaction

Protein

Can use clustering to 
find additional proteins 

that play a role in 
Alzheimerʼs. 



Finding Disease-Associated Genes

% of omitted annotations recovered.

Alzheimerʼs 
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(Navlakha & K., Bioinformatics, 2010)

Function Transfer 
Methods:

- Neighborhood 
(majority rule)

- Clustering (MCL, 
GS, VI-CUT)

- Random-walk (and 
flow-like algorithms)

Leave-one-out cross 
validation.

124 (out of 450) 
disease families with 
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Function Transfer 
Methods:

- Neighborhood 
(majority rule)

- Clustering (MCL, 
GS, VI-CUT)

- Random-walk (and 
flow-like algorithms)

Leave-one-out cross 
validation.

124 (out of 450) 
disease families with 

For 60% of diseases considered, a 
clustering method achieves within 

1% of the best precision.

For 52% of diseases, a clustering 
method achieves within 1% of the 

best recall.



Challenges With Clustering Biological 
Networks

1. Uncertainty in the clustering objective function & the 
quality of the optimal solution.

2. Uncertain edge links due to experimental noise and 
limitations.

3. Known – but possibly wrong – cluster membership for 
some nodes. Navlakha, White, Nagarajan, Pop, and Kingsford, 

RECOMB 2009.

Cluster probabilistic graphs.

Explore alternative clusterings in 
a systematic way.
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What can we learn from near-optimal 
clusterings?

Exploiting the degeneracy of modularity



There Are Often Many Reasonable 
Network Clusterings

How can we sample the space of network clusterings?
What can near-optimal clusterings reveal about network structure?

van Dongen 1998
Newman 2003
Bader and Hogue 2003
King+ 2004
Pereira-Leal+ 2004
Pons and Latapy 2005
Blatt+ 2006
Royer+ 2008
Navlakha+ 2009

e.g. protein-protein 
interaction network

clustering 
algorithm space of 

clusterings
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Usefulness of Near-Optimal Clusterings

1. Correct clustering could 
be obscured by noise

2. Confidence in the optimal solution 
can be assessed by comparing 
nearby solutions

Distance from optimal!

Solution 
quality!
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2. Resilient or robust communities 
can be identified

!"
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4. Core and peripheral community 
members can be distinguished

+ constraints or 
perturbations =



Near-Optimal Solutions Represent 
Legitimate Clusterings

Cluster quality: modularity (Girvan & Newman, 2003)

ERK1/ERK2 MAPK signaling 
pathway (32 nodes; 54 edges)

Highly conserved across eukaryotes; 
regulates meiosis, mitosis, metabolism



MAPK Global Clustering Dynamics

Co-clustering heatmap

Resilient community
Nodes remain 
together in many 
near-optimal solutions

Core & peripheral 
members

Nodes 27 (PKA) & 20 
(Rap1a) travel 
together more than 27 
and 13 (Mos)

Any single solution 
would miss these 
dynamics



How can we generate many good near-
optimal clusterings?



• Simulated annealing (e.g. Guimera+ 2005, Massen & Doye 
2005): global optimization heuristic

• Linear programming (Agarwal & Kempe 2008): randomized 
rounding to convert fractional solutions to integral solution

• Random perturbation (e.g. Hadjitodorov+ 2006, Nabieva+ 
2005, Hopcroft+ 2004): cluster once, randomly perturb 
objective function or data, re-cluster.

• All based on randomness:
- Large deviations are improbable
- No guarantee that perturbed solutions are of high-

quality

⇒ To avoid these problems, we propose a constraint-based approach.



Modularity

A clustering quality measure

Intuition: want # of edges inside a cluster > expected by 
chance and # of edges between clusters < expected by 
chance.
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Integer-Linear Program (ILP) to Maximize 
Modularity (Agarwal+, 2008)

maximize
�

u∈V

�
v∈V (Auv − kukv

2m )(1− xuv)
subject to

xuv + xvw ≥ xuw for all u, v, w ∈ V

xuv ∈ {0, 1}
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Solving this ILP is NP-hard but for 
reasonably small networks it can be 
solved optimally using branch-and-bound.

Can use heuristic solutions as initial LP 
basis and lower bounds.



Solution Vector

X0!  = [!-! 0! 0! 1! 1! 1
! ! -! -! 0! 1! 1! 1! ! !
! ! -! -! -! 1! 1! 1! ! !
! ! -! -! -! -! 0! 0
! ! -! -! -! -! -! 0 ]
! = <0 0 1 1 1 0 1 1 1 1 1 1 0 0 0>

Optimal modularity clustering

A	
  solu'on	
  is	
  a	
  (n	
  choose	
  2)-­‐sized	
  vector

Input network

1

2 3

4

5 6

1

32

4

5
6

nodes 3 and 6 are not co-clustered

nodes 5 and 6 are co-clustered

0 0 1 1 1 0 1 1 1 1 1 1 0 0 0



Diversity Constraints

# pairs in different clusters 
in X0 but co-clustered in X:

# pairs co-clustered in 
solution X0 but not in X:

Hamming distance Δ(X, X0) between X and X0 

Add combined constraint to ILP and re-solve:

(�1−X0) · X ≥ d0
split

X0 · (�1−X) ≥ d0
merge

X0 · (�1−X) + (�1−X0) · X ≥ d0
changes



Diversity Constraints

0 0 1 1 1 0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 0 0 1 1 0 1 1 1 1 0

X0

X Hamming
Distance	
  =	
  5

0	
  ⇒	
  1	
  :	
  2

1	
  ⇒	
  0	
  :	
  3

X0 · (�1−X) + (�1−X0) · X ≥ d0
changes

Can iteratively add such constraints to explore more and more 
different solutions. 

Measure distance between clusterings by the # changes in the 
co-clustering matrix (Rand-index-like). 

For alternative ways to measure this distance, see 
Geet Duggal & Saket Navlakhaʼs poster.



di+1
changes = ∆(X0, Xi) + 1 ∆(Xj , Xi) ≥ 1 ∀j, 0 ≤ j < i

Creating the Modularity Landscape
Coarse grained: 

quickly sample diverse solutions
Fine grained: 

ith solution is a provably ith optimal

22

Q0	
  =	
  	
  .4197

38

Distance-based Point-based 

Q0	
  =	
  	
  .4197
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What can near-optimal solutions reveal 
about network structure?



Zachary’s Karate Club (34 nodes, 78 edges)

Linear relaxation returned an integral 
solution (so randomized rounding 
can’t be done).

OPT mod = 0.419; 100th solution of 
point-based approach still has 
modularity > 0.4

# communities does not change 
monotonically (get to the “truth” of 2 
communities at the 31st solution).
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23

Node 10 is with officerʼs faction in optimal, but 
instructorʼs group in 2nd best solution.

Known to only weakly support each faction.

Equally topologically connected to both groups.

But known to be a strong supporter of the instructor. 

Stays connected to instructorʼs group until the you get very far 
away from the optimal (@ the 72nd, 78th, and 80th near-optimal 
solutions)



Anatomical Brain Network (66 nodes, 2149 edges)

Convert weighted edges to multiedges:
	

 Auv = # of edges between u and v	



	

 	

 	

 (instead of just 0 or 1)

Right	
  frontal	
  pole

Le0	
  posterior	
  cingulate	
  cortex
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  cortex

Right	
  temporal	
  pole

Hagmann+	
  2008	
  and	
  Brede	
  Database

Fixed	
  spa'al	
  posi'ons:

Diffusion	
  spectrum	
  imaging	
  (DSI)



Degeneracy in modularity:
	

 First 53 solutions (distance-based) all within 1% of optimal modularity
	

 Near-optimal solutions also have better spatial cohesion

Uncertainty in the optimal clustering

Clustering	
  1 Clustering	
  21 Clustering	
  56

modularity = 0.591012
spatial dispersion = 49.14

modularity = 0.588372
spatial dispersion = 46.53

modularity = 0.581412
spatial dispersion = 48.64



Near Optimal Solutions

• Near-optimal solutions provide deeper insight into community 
structure and dynamics:
– Combat noise in network
– Assess confidence in optimal clustering
– Identify resilient communities
– Distinguish between core and peripheral members

• Explicit constraint-based approach using integer linear 
programming
– Theoretically sound with distance and optimality guarantees

• Future work
– Near-optimal solutions for other objective functions?
– Larger networks; core-peripheral proteins in complexes [Gavin+ 2006]
– Do dynamics across the landscape correlate with dynamics over time?
– Improve running time
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Clustering Probabilistic Graphs



Expected Quality Clustering

Single graph

Instantiations of the 
probabilistic graph.

...argmaxC EGf(G, C)

argmaxC f(G, C)

Clustering quality 
function

Clustering

Next: a heuristic for optimizing E f(G, C) 
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