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Why Cluster Biological Networks?

Networks based on protein binding, gene regulation, gene
redundancy, & metabolic reactions are naturally “modular.”

Summarize complexity,  Associate proteins with Uncover redundant
pattern mining, diseases, functions, or cellular pathways
visualization complexes

Various optimization functions & algorithms have been
developed depending on the task.



Visualization & Interactive Exploration

‘«}$‘~.~..‘.;.;.~~~~~~.~‘~~~‘

et BP22222%3322222L BN AN nn
0 00§ G 00 G0 G0 G0 40 5 G0 40 G G 4 W G G0 00 40 0 W W wg s

LB 3 3 35 25 35 5 5 35 40 b b 2

Clustered (via graph compression) of
Yeast protein interaction network yeast interaction network

Graph Summarization (Navlakha, Schatz, & K., J. Comp. Biol., 2009)



Finding Disease-Associated Genes .

Small portion of the
human protein-protein
interaction network

Proteins known to be
associated with
Alzheimer's (OMIM)

Can use clustering to
find additional proteins
that play a role in
Alzheimer’s.
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Finding Disease-Associated Genes

Alzheimer’s

Function Transfer
Methods:

- Neighborhood
(majority rule)

- Clustering (MCL,
GS, VI-CUT)

- Random-walk (and
flow-like algorithms)
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0.2 0.4 0.6 0.8 124 (out of 450)
Max. recall amongst all 13 methods _ . :
disease families with

% of predictions that are correct.

% of omitted annotations recovered.

(Navlakha & K., Bioinformatics, 2010)



Finding Disease-Associated Genes

Alzheimer’s

Function Transfer
Methods:

| For 60% of diseases considered, a r?ﬁ%‘;

_______ | clustering method achieves within EJ{{e®

------- | % of the best precision. ?Vl\j;)k (and
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________ For 52% of diseases, a clustering
------- | method achieves within 1% of the

best recall.
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Challenges With Clustering Biological
Networks

1. Uncertainty in the clustering objective function & the
guality of the optimal solution.

Explore alternative clusterings in
a systematic way.

2. Uncertain edge links due to experimental noise and

limitations.
ations Cluster probabilistic graphs.

3. Known — but possibly wrong — cluster membership for

some nodes. Navlakha, White, Nagarajan, Pop, and Kingsford,

RECOMB 2009.
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What can we learn from near-optimal
clusterings?

Exploiting the degeneracy of modularity



There Are Often Many Reasonable
Network Clusterings

clustering

\i'."_"’ : algOrithm space of
_e.g. pro_teln-protem clusterings
Interaction network

How can we sample the space of network clusterings?

What can near-optimal clusterings reveal about network structure?



There Are Often Many Reasonable
Network Clusterings

van Dongen 1
Newman

clustering

J/c e el algOrithm space of
_e.g. pro_teln-protem clusterings
Interaction network

How can we sample the space of network clusterings?

What can near-optimal clusterings reveal about network structure?



Usefulness of Near-Optimal Clusterings

1. Correct clustering could
be obscured by noise
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2. Confidence in the optimal solution
can be assessed by comparing
nearby solutions

Solution Many comparable
: solutions
quality

Few good solutions

Distance from optimal

2. Resilient or robust communities
can be identified

+ constraints or
perturbations

4. Core and peripheral community
members can be distinguished

Peripheral




Near-Optimal Solutions Represent
Legitimate Clusterings

Cluster quality: modularity (Girvan & Newman, 2003)

ERK1/ERK2 MAPK signaling
pathway (32 nodes; 54 edges)
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Highly conserved across eukaryotes;
regulates meiosis, mitosis, metabolism

modularity = .501886 modularity = .444959



MAPK Global Clustering Dynamics
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How can we generate many good near-
optimal clusterings?



« Simulated annealing (e.g. Guimera+ 2005, Massen & Doye
2005): global optimization heuristic

 Linear programming (Agarwal & Kempe 2008): randomized
rounding to convert fractional solutions to integral solution

 Random perturbation (e.g. Hadjitodorov+ 2006, Nabieva+
2005, Hopcroft+ 2004): cluster once, randomly perturb
objective function or data, re-cluster.

e All based on randomness:

- Large deviations are improbable

- No guarantee that perturbed solutions are of high-
quality

= To avoid these problems, we propose a constraint-based approach.



Modularity

A clustering quality measure

Intuition: want # of edges inside a cluster > expected by
chance and # of edges between clusters < expected by
chance.

Adjacency matrix of G Degree of node v

q(G,C) = (juv k;ki> (1 — Zuw)

TN
u,veV T /\
# edges in G Oifuandvarein

the same cluster;
1 otherwise



Integer-Linear Program (ILP) to Maximize
Modularity (Agarwal+, 2008)

maximize Z’UJEV Z’UEV(AUU kg,r]:bv )(]- I aj’U/U)
subject to
Ty + Tow = Tyw for all u,v,w eV

Enforce triangle 7 B

inequality to makea ¢4 & {O, 1}
legitimate partition /

Hard clustering (not soft)

Solving this ILP is NP-hard but for
reasonably small networks it can be
solved optimally using branch-and-bound.

Can use heuristic solutions as initial LP
basis and lower bounds.



Solution Vector

Input network Optimal modularity clustering

=[ - 0 0 1 1 1
- - 0 1 1 1
N T 1/ nodes 3 and 6 are not co-clustered
- - - -00 nodes 5 and 6 are co-clustered
- - - - - 04
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A solution is a (n choose 2)-sized vector



Diversity Constraints

# pairs co-clustered In

solution X° but not in X: (1 — X ) - X Z dsplit

# pairs in different clusters

in X0 but co-clustered in X: XO y (1 — X) > dO

— “Ymerge

Add combined constraint to ILP and re-solve:

X0 IT-X)+(1-X% X >d°

— “*changes

—_——

Hamming distance A(X, X%) between X and X0



Diversity Constraints

Measure distance between clusterings by the # changes in the
co-clustering matrix (Rand-index-like).

For alternative ways to measure this distance, see
Geet Duggal & Saket Navlakha’s poster.

X I-X)+1-X%.-X>qY

changes

>

Can iteratively add such constraints to explore more and more
different solutions.
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Creating the Modularity Landscape

Coarse grained: Fine grained:
quickly sample diverse solutions i solution is a provably it optimal
depanges = DX, X") +1 AX7, X)) >1V,0<j <1

Distance-based Point-based
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Creating the Modularity Landscape

Coarse grained: Fine grained:
quickly sample diverse solutions i solution is a provably it optimal
depanges = DX, X") +1 AX7, X)) >1V,0<j <1
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What can near-optimal solutions reveal
about network structure!?



Zachary’s Karate Club (34 nodes, /8 edges)
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Linear relaxation returned an integral
40
solution (so randomized rounding Community Index
can’t be done).

# communities does not change
monotonically (get to the “truth” of 2
OPT mod = 0.419; 100th solution of communities at the 3 [st solution).
point-based approach still has
modularity > 0.4
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Node 10 is with officer’s faction in optimal, but
instructor’s group in 2nd best solution.

Known to only weakly support each faction.

\

Equally topologically connected to both groups.

But known to be a strong supporter of the instructor.

Stays connected to instructor’s group until the you get very far
away from the optimal (@ the 72nd, 78th, and 80th near-optimal

solutions)



Anatomical Brain Network (66 nodes, 2149 edges)

Diffusion spectrum imaging (DSI)

~ Fixed spatial positions:
g
Right frontal pole
@ @ @ Right temporal pole
(o &
@@ @@ Right parahippocampal cortex
@ @ st O Left posterior cingulate cortex
”
Convert weighted edges to multiedges:
A, = # of edges between u and v
(instead of just 0 or |)
@-g

Hagmann+ 2008 and Brede Database



Uncertainty in the optimal clustering

Clustering 1

modularity = 0.591012
spatial dispersion = 49.14

Degeneracy in modularity:

Clustering 21

.
7/

i
N ‘a\\\‘\"im}’“"} /m
\ l e q\“\‘\'g‘i!"-m%éwmml' /’;gz)’% y f

\ LA\
AI\LI‘ A8

; \ll\ ‘ "\l\‘i'lvl"!i"ﬂ;%f//(" Y
. ~!,‘,'“ \,.‘““\IL’/ ]
\\ 7\\%@’«\“""@‘ ]1:}"“/ 7
N w4

N 7

\“w‘“ o
.\‘.o RO /
W/I»s‘-'-»\\!\‘

modularity = 0.588372
. spatial dispersion = 46.53

Clustering 56
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modularity = 0.581412
spatial dispersion = 48.64 4

First 53 solutions (distance-based) all within 1% of optimal modularity

Near-optimal solutions also have better spatial cohesion



Near Optimal Solutions

* Near-optimal solutions provide deeper insight into community
structure and dynamics:

— Combat noise in network

— Assess confidence in optimal clustering

— ldentify resilient communities

— Distinguish between core and peripheral members

 Explicit constraint-based approach using integer linear
programming
— Theoretically sound with distance and optimality guarantees

* Future work
— Near-optimal solutions for other objective functions?
— Larger networks; core-peripheral proteins in complexes [Gavin+ 2006]
— Do dynamics across the landscape correlate with dynamics over time?
— Improve running time
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Clustering Probabilistic Graphs



Expected Quality Clustering

argmax, f(G,C)

1

Clustering ¢
function

argmax. Eq f(G,C)

Clustering

\

uality

Instantiations of the
probabilistic graph.

Next: a heuristic for optimizing E f(G, C)
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