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The classic voter model
3 basic results

Voting on complex networks  T.Antal, V.Sood

new conservation law
two time-scale route to consensus
short consensus time

Strategic voting (>2 states) M. Mobilia, D.Volovik
long time-scale switching

Partisan voting N. Masuda, N. Gibert
selfishness vs. collectiveness
ultraslow evolution
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0. Binary voter variable at each site i
|. Pick a random voter

2.Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state
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0. Binary voter variable at each site i
I. Pick a random voter

2.Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state

3.Repeat | & 2 until consensus necessarily occurs in
a finite system




Voter Model Evolution  Doricetal 2001)




Lattice Voter Model: 3 Basic Properties
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Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, 153 (2003)
K. Suchecki,V. M. Eguiluz, M. San Miguel, EPL 69,228 (2005)
V.Sood, SR, PRL 94, 178701 (2005); T.Antal,V. Sood, SR, PRE 77,04 1121 (2008)

illustrative example: pick site on pick | pick Ton b
complete bipartite graph a SUb'ati';e 0'@3 Sﬂ“b'amce
”O(_\asites AN o a {Q—Naﬂ_&b—]\fb}
degree b a a+b 0 b a b

b a b a

_— bsites d Nb _

b b—NbNa Nba—Na
degree a a—l—b{ }

Subgraph densities: p, = Nu/a, pp = Ny/b dt =1/(a +D)

1 _ 1
pap(t) = 5[pas(0) = pa(0)] e + S[pa(0) + pu(0)]
= 5[pa(0) + pp(0)] magnetization not conserved
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Voter Model on Complex Networks

high degree; few nodes
— changes rarely

low degree; many nodes
— changes often

“flow” from high degree to low degree




New Conservation Law

low degree
— changes often

high degree
— changes rarely

to compensate different rates, consider:

. 1
degree-weighted , — — Z knkpr  conserved!
| st moment: P =

p1 = av. degree
ng = frac. nodes of degree k
pr = frac. T on nodes of degree k




Exit Probability on Complex Graphs
E(w)=w

Extrem -star sraph N nodes: degree |
treme case: star grap | node: degree N
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Route to Consensus on Complex Graphs

0 02 04 P, 0.6 0.8 1 0

Pp

| | | | 0

complete bipartite graph

a sites
degree b

_— b sites
degree a

N=10000, C links/node




Consensus Time Evolution Equation

warmup: complete graph

T(p) = av. consensus time starting with density p

T(p) = R(P)T(p+dp)+di]
+L(p)[T'(p — dp) + di]
+[1 = R(p) — L(p)][T(p) + di]




Consensus Time Evolution Equation

warmup: complete graph

T(p) = av. consensus time starting with density p

T(p) = R(P)T(p+dp)+di
+L(p)[T'(p — dp) + di]
+[1 =R(p) = LT (p) + di]

. A~ R(p) = prob(I1—11)

0 P 1 =p(1—p)




Consensus Time Evolution Equation

warmup: complete graph

T(p) = av. consensus time starting with density p

T(p) = R(P)T(p+dp)+di
+L(p)[T(p — dp) + di]
+[1 =R(p) = LT (p) + di]
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0 0 1 L(p) =prob(T]—1])
=p(1=p)




Consensus Time Evolution Equation

warmup: complete graph

T(p) = av. consensus time starting with density p

T(p) = R(P)T(p+dp)+di
+L(p)[T(p — dp) + di]
+[1 =R(p) = L(V][T(p) + dt]
I1-R-L
. M . R(p) = prob(I1—11)
0 0 1 L(p) = prob(T]—1])
=p(1=p)




Consensus Time on Complete Graph

T(p) = RPI[T(p+dp)+dt]
+L(p)[T(p — dp) + dt]
+[1 = R(p) — L(p)I[T(p) + dt]
N
p(L—p)

continuum limit; T — —

solution:

T(p) = —Nl[pnp+ (1 —p)In(l - p)]




Consensus Time on Heterogeneous Networks

T({pr}) = av. consensus time starting with density py
on nodes of degree k

T({p}) = 3 Reloe DT ) + i
k
+ ) Li({pe DTy }) + dt]
+ [1= S Relhond) + LoD T ({or}) +

k

Ri.({pr}) = prob(pr, — pi) Li({pr}) = nepr(l —w)

1 11
=52 EZ P(l,—,1)
x Y

= npw(l — pr)




Consensus Time on Heterogeneous Networks

continuum limit;

OT  w+ py — 2wpy O°T
> [(w—pr) =1
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- Opk 2N ny dp3




Molloy-Reed Scale-Free Network
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Consensus Time on Heterogeneous Networks

continuum limit;

Z[<w yOL wton —2op 010 _ 4
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P e 2Nny  Op?
now use pr — w Vk
0 _ Ow 9 _ knp 0
and O = Gpv b0 = - 0o
2 2
to give 3_T — _NL/M same T — N
Ow? w(l — w) as p(1 —p)

with effective size Neg = IV ,u% / 15




Consensus Time for Power-Law Degree
Distribution ny ~ k™"
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British election results since 1830

Strategic Voting

Canadian election results since 1935
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D.Volovik, M. Mobilia, SR

Strategic Voter Model &% 01 Goos

randomly-selected voter changes to any
other state equiprobably (rate T)

majority-minority interaction: minority
preferentially changes to majority (rate r)
rate equations (A, B majority; c minority):
A=T(B+c—2A) +rAc
B=T(c+A—2B) +rBc
¢=T(A+B—2c) —r(A+ B)c




Phase Portrait

regular 3-state
voter model




Phase Portrait

strategic 3-state
voter model




40

% vote

Slow Switching

V—VA
N—/\B
O—COC
UYYY/Ne “y‘q /\ l#\ he
O R\ TNl 2N b o 7K 2
as A Ty “v‘rﬂﬁ Pty Rag ‘/"V'W'C.'qy‘iw;‘\\
e
I
Y
W
7 Y - a AAA
30 - g \V\V/ \V/ > A
LAY ) VVv)vv' vv A"‘
vV o\ WY Y N 7Y N
v
()
25 | |
38350 38400 38450 38500




60

20

British election results since 1830

60

Canadian election results since 1935

O—-O Liberal

20

O—-CO Conservative
A—\ Liberal
V—~V NDP/CC

year

/5~—=\ Conservative
V—V Lab
0 \a > 1 1 . 1 (a) o 1 1 1 1 (b)\
1830 1860 1890 1920 1950 1980 2010 1935 1945 1955 1965 1975 1985
year




Partisan Voter Model s & Sibers sk

happy sad sad happ
democrat democrat republican { republican
density Dj,  density Dy density R density Ry,

partisan voting update:

|. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes happy by
adopting neighboring state, T l — l l
change occurs with rate |+¢; |+¢

2b. If initial voter becomes unhappy by
adopting neighboring state, l T — TT
change occurs with rate |-€. |-€




Partisan Voter Model: Mean-Field Limit

rate equations:

Dy = 2eDpD,+ (14¢)D,R, — (1 —¢€)DyRy,
D, =—2¢DpDy+ (1 —€) DRy, — (14 €) DR,

and R <~ D




Symmetric Case: D=R=Y,
H =D, + Ry,
= density of happy voters
AEDh—Rh:Dh—(%—RS):p—%
= density democratic voters —%




Consensus Time on Finite Graphs

£=0.15 /A £=0.05

€=0.05 .

complete
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Summary & Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)

Voter model on complex networks:
new conservation law
meandering route to consensus
fast consensus for broad degree distributions

Extensions:
strategic voting = minority suppressed
partisan voting — selfishness forestalls consensus

Future:

“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions — social balance




Crass Commercialism

| Aperitifs

2. Diffusion

3. Collisions
4. Exclusion
5.Aggregation

A Kinetic View of
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