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Born-Oppenheimer electronic states  (adiabatic representation)

Hg,(rR) = E (R)o,(tR)  He'=H - TCw

E (R) serves as potential for motion of nuclei.

Ignores action of T™ on ¢ (r,R) . This gives rise to nonadiabatic transitions.

Adiabatic representation: coupling from kinetic energy

Diabatic representation: coupling from potential energy.

<o, (r,R) [H |p (r,R) > has off-diagonal elements.

Surface Hopping: Trajectories run on adiabatic energy surface E _(R) with abrupt
hops between different energy surface to account for nonadiabatic coupling.

Tully, Truhlar, Rossky, Nakamura



Semiclassical Surface Hopping Expansion

P(x) = oi(x)yi (%) + Zioi(x) W) + I 0i(x) wiP(x) + ...

i =AexpiWh) W= [ pdx' A =[p(xo)/p(x)]"

\Vj(l) = fx); dX]Tij(Xl) A exp(_i W/h)

T = -[(prtp))/2(pipy) i ni =< ¢; | doi/dx >

y® =z fx); dx; J;:z dx;Tin(x1) Tj(X2) A exp(iW/h)

Corresponding SH expansions for propagator, IVR propagator, GUWF



F(x) = gi(x)w(x) + Zigi(x) wi(x) + Z 0i(x) W) + ...
o OVdx? = ¢; Py P/dx? + 2 doy/dx dy@/dx + ¢, @ d*ey/dx’

do/dx = n; @; d*@i/dx’ = - ny” ¢; + ¢; dn/dx

% 0} fx}; dx;7ii(x1) A exp(iW/h) = @; 1;(x) A exp(iW/h) + other
terms
This has same factor of n; @; as dg;/dx term from o) V(%)
Taking second i on this term gives n; @;, @; dn;/dx, and ;" o,
terms

If amplitudes for non-classical events chosen correctly, can
cancel terms in SE arising from action of d*/dx* on o;(x)w; V().



Need 3 Types of Non-Classical Events to Satisfy (H-E) ¥ =0

First Order Term:
W /h i iW o /h
PO = @ [dx, Tx )Are ™ 4 @, [dx, px)Aze ™
XO X
iW/h
+ (pifdxlpiiANe "
4 |
T-type hop R-type hop
non-hopping
momentum
reversal

Y)(x) contains all sequences of n non-classical events



Amplitudes for Non-Classical Events

ik
T-type hop: T = ———— 1.

Hop with momentum reversal: Pie = i 1

Momentum change without hop: Py = zé, A = prefactor

In numerical calculations:
Ignore momentum changes without hop.
Use only T-type hops in allowed regions.



Steps of finite size are used in numerical calculations
Step amplitudes: ;(x,) = m;(x,,x)¥i(X,)  X,= Xt dxort=t+dt
Treat T-type 1 — j hop as occurring at middle of step. (can do better)
my; = [Ai(x,)/Ai(X,)] exp(iW,;;/h) sin(A6;) AB,= frijdx if1#]
my; = [Ai(Xp)/Ai(x,)] exp(IW;/h) cos(AD;) (2 state case)

These step amplitudes contains 1, 3,5, ... or 0, 2, 4, ... hop terms.
Allows larger steps near avoided crossing points.

In IVR method, have final point for the step fixed, allow 1nitial point
to vary.

W(X,) = M(X,X,)W(X,)

W(X,) = M(XpX,  )M(X,10%,0) - M(X,X0)W(%o) - MM approach (1-d)
[fd>1, use P=|m;|/[X,|m|] as probability of 1ij hop in MC calc.



Surface Hopping Expansion Formally Satisfies SE
(TISE and TDSE). In General Not Convergent at All
Points. (Proof applies in allowed region and for
forbidden region in 1-d case.)

Corresponding IVR Expansions for TDSE and TISE
Satisfy SE to order h.

Recent Advances Show That It is Possible To
Significantly Reduce The Statistical Errors in Monte
Carlo Surface Hopping IVR Methods

Y. Wu and MFH, JCP 125, 154116 (2006); 127, 044109 (2007)
MFH and Y. Wu, JCP 128, 114105 (2008)



Diabatic Potential Surface for Model Calculations




Comparison of guantum and semiclassical

transition probabilities for E > E_

E.=0.37
E Pq Po (X >Xy) Poy(Xx>xp,)
0.38 0.618 0.440 0.576
0.40 0.951 0.819 0.918
0.45 0.142 0.179 0.143
0.50 0.835 0.761 0.838
0.60 0.543 0.508 0.544
0.75 0.356 0.348 0.356
0.90 0.118 0.120 0.118
1.20 1.87x102% 1.77x102 1.86x107
1.40 0.184 0.182 0.184

Both T-type and R-type hops in forbidden region.



Comparison of quantum and semiclassical
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Singular at x,,. Significant cancellation between allowed and forbidden regions.
Why does it work so well?

Im X
.Kb T

Fig. 2



For transitions in forbidden zone

Wave function on upper surface (¥,) decays rapidly
when moving into the forbidden zone from turning
point.

Nonadiabatic coupling (1) sharply peaked around
crossing point (in forbidden region) and 1s decaying
when moving from crossing point toward turning point.

Product of W and n is peaked in forbidden zone
near turning point.

Suggests approximation based on behavior near
turning point may yield good results.



lag(F)

Log aof transition probability vs Energy

l:l T T T T T I

-12
0.2 0.22 0.24 026 0.23 0.3 0.32

Bheryy

Probability of quantum state change in model collision system for

forbidden transitions.
. exact quantum results, —— semiclassical results,
“simple” approximation to semiclassical calculation.

0.34

0.36 .33

results using

For details see:

M. F. Herman,
J. Phys. Chem. B
112, 15966 (2008).

and

P.-T. Dang and
M. F. Herman,
J. Chem. Phys.,
130, 054107
(2009).



Singularity Free Surface Hopping

Break x axis into small regions or steps
Treat adiabatic electronic states as constant across each step

Treat adiabatic potential surface for each states as linear function
of x across step

Use B, = Ai(z) + i Bi(z,) as wave functions in each region
z; = [2m/(h dV/dx)*]"*[V(x)-E]

B, ~ p2 exp(ilpdx/h) as h — 0



region k region k+1

i
: Tyt Biges ™




Solve matching conditions that the wave function and its derivative
are the same across the boundary

Get step amplitudes for hop and/or change in direction of
propagation

Gives expansion with the same set of terms as the surface hopping
expansion

Exact if all terms kept

Reduces to SC SH expansion in small step size and h — 0 limits



0.20
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MFH, J. Chem. Phys. 131, 214108 (2009)
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The Semiclassical Wave Function
for d > 1 in the Forbidden Region

Single Surface Case



V() =Aew
A=10
a=1 : s S
m = 1836
h=1

E=14

lI’in(Xa y) - eikx




w(r) = A eiW/h

W can have real and imaginary parts in forbidden region:

WZWa+in

Substitute y in the time independent Schrodinger equation:

hZ
— —V2y+V(r)y=Ey

Order h° equation:

VW2 VW2 - yW?
+V=E 2 b _E_v
2Zm 2m
P3-Ph _

VW = p=p, +ip, E-V

2m

Order h' equation:

V-(pat ipp) A+2(pa+ ipy)-VA=10

pa.pb:O



ep = unit vector along py,
e, = unit vector along p,, s, is distance in p, direction

e, = unit vector along py,, Sy, 1s distance in p;, direction

p2 _pz
a2m b_E_-vV Pa Pp=0 (order h’ equations)
app oV dpa opp
=M TPy ives —— op./0
Pb 3s maSb Pa a5t gives .y (need Op./0sp)



V() =Aew
A=10
a=1 : s S
m = 1836
h=1

E=14

lI’in(Xa y) - eikx




00 " d
— determines i
dS, dsy

ds,

dW, = pds,

ds,

90 1 dpy 9pp

— g —

— determines =
dsp Py 0s, ds, dsp



dp,
pa asb

dpp
Pob i

=m— +
aSb

dpp _m Vv +p§ 0
PbOSp Pb 0sa

aSb

(order h’ equation)

V-(pat+ ipp) A+2(p.+ ipy)-VA=10

dA dA

2 +2i py—
p*‘asa - pbasb

+AV:-(p,+ipy) =0

A dA ,
— = (i/py) | Pag .+ AV - (p, + ipp)l

aSh a

_0p, 00 0pa Pa Opp
Vepa=2" +p, .
ds, dsp, Os; Pp 0s,
il a2t
Pb dsp, pbasa

(order h' equation)

uses

G LY

1 dpp

dsy

Pp 0s,3



V() =Aew
A=10
a=1 : s S
m = 1836
h=1

E=14

lI’in(Xa y) - eikx




® =4mn/5

1.8

19

log,o(Jwl)

Y = yle®







Why does proof that SH expansion
satisfies SE not apply in forbidden region

Proof implicitly assumes p 1s a vector. It can be real or imaginary.

In forbidden region p = py+ip, has both real and imaginary parts
and these are perpendicular.

SH expansion must be generalized:

Instead of a single hop 1n the n direction, useqn=n,+1n, + ...
where - 1, = 0.

Choose n, parallel to p;.

Work 1n progress! (Both formal analysis and numerical calculations.)



Using Surface Hopping for Calculations of
Accurate Wave Functions for d > 1 Test
Problems

Y(r, 0) = Xy, ()P (0)

P, (0) angular momentum eigenfunction

Wi = /1D

Consider d = 2 for simplicity



Y(r, 0) = Xy, ()P (0)

Mo (@13, .2
e 2m [arl’ U r 6r] bl ekl ) Yk = Xk/rl/z
V.= 1d0 P,(0)"V(r,0)P,(6)
h?d%; , j%h°
(_ 2_“ dl.zl ;“rz X] (I’) ) s vaj—m(r) X,m(r) e Xj(r)
(Langer modification included)
Py o :
Vii(r) = 6 5 — + Vij(r) diabatic potential
V(1) =U()" V(r) U®r) adiabatic potential
Qu(0,1) = Xim Umik(r) Pr(6) adiabatic angular states

P.(0) angular momentum states

Ni = < Q; | dQy/dr > nonadiabatic coupling



W50 =X2_, Qi (it

xl((a)(r) obtained from 1-d surface hopping expansion for radial
Hamiltonian in adiabatic representation (use MM approach).

Numerical Problem with single electronic state:
Vr,0)=Ae™ (1 +axyr)= Ae™[l +asin(20)/2]
A=10, a=3, a=0.7, m=1836.2, h=lI

Use symmetry adapted eigenfunctions of J, as diabatic angular
states

Calculate state-to-state transition probabilities



Calculation of transition probabilities 2-state tests (exact
quantum results can be obtained numerically)

States  E=0.1 E=0.4 E=0.7 E=1.0
13 6.67x107(S) 2.80x10 0.603 0.491
6.79x107(Q) 2.83x10 0.603 0.492
3,6 0.469(S) 0.808 2.61x10%  0.587
0.469(Q) 0.808 2.60x10°  0.587
58  0.612(S) 0.953 0.106 0.545
0.611(Q) 0.953 0.106 0.545
10,15  0.650(S) 0.923 0.150 0.464
0.650(Q) 0.923 0150 0.465
20,25  0.749(S) 0.802 0.315 0.239
0.749(Q) 0.802 0.314 0.240
50,55  0.667(S) 431x10™ 0.915 0.392
0.667(Q) 4.33x107 0.915 0.391
100,105 9.54x107(S) 0.568 0.175 3.09x10
9.54x10°(Q) 0.568 0.175 3.09x10~
150,155 8.31x10°°(S) 8.24x107 0.358 0.461
8.35x10°(Q) 8.24x107 0.358 0.461
200,205 4.76x107°(S) 3.30x107 5.19x107  0.166

4.80x107(Q) 3.30x107 5.19x10°  0.166



Many State Calculations

Total Cross Section

E

0.1
0.1

0.4
0.4

0.7
0.7

1.0
1.0

number of states

251
301

301
351

351
401

401
451

Approximate calculation:

Y2(pi + p)/y/ IPip;| =1 in allowed region

For t;:

For Pij-

Ya(pi + P)/y/ IPiPj| = (1+i)/2 in forbidden region

o(comp)

11.1347
11.1347

10.1698
10.1698

9.7766
9.7763

9.5250
9.5256

c(approx)

11.1362
11.1361

10.1705
10.1704

9.7769
Q.7765

9.5251
9.5258

Y2(pi - p/y/IPiPj| = 0 in allowed region

Y2(pi - p)/y/ |Pip;| = (1-i)/2 in the forbidden region

¥,,(x.y) = exp(ipr/h)



Differential cross section, E = 0.7, 401 states

[ =

-
= i




CONCLUSIONS

Detailed formal analysis shows what terms must be
included in order to have highly accurate SH method.

Surface Hopping Expansion provides very good
transition probabilities even for strongly forbidden
transitions.

Cancellation between contributions from allowed
and forbidden regions must be accurately accounted
for.

Good approximation obtained using only information
evaluated at turning point. (Only 1-d case so far.)

Singularity-Free version improves results near

crossing energy of diabatic surfaces
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