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Classical mechanics: Hamiltonian system,
discontinuous Hamiltonian, transmission and
reflection (J-\Wen)

Quantum barriers: quantum-classical coupling,
Interference (J-Novak)

Diffraction: use GTD (J-Yin)

Surface hopping (J-Qi-Zhang)
Gaussian beam method (J-Wu-Yang)
conclusion



I: Classical Mechanics for singular Hamiltonians

a Hamiltonian system:
dx/dt =V, H
de/dt=-V, H
H=H(x, &) is the Hamiltonian

Classical mechanics: H=1/2 |§|>+V(x) (=> Newton’s second law)
Geometrical optics:  H =c¢(x) [§|

computational method based on solving the Hamiltonian system is referred to as the particle method, or a
Lagrangian method

Phase space representation:
fi+ V. H- V, f-V,H.- V. f=0

f(t, x, &) is the density distribution of a classical particle at
position X, time t, with momentum §

Computational methods based on solving the Liouville equation will be refereed to as the Eulerian method

The Liouville equation can be solved by method of characteristics if H is smooth



Lagrangian vs Eulerian

o Lagrangian: simple, efficient in high
dimension
particles (rays) may diverge: loss of
accuracy, remeshing (increasing particles)
IS needed which may be complicated

o Eulerian: solving PDEs on a fixed mesh--
nigh order accuracy; computational cost
nigher (reducing cost: moment closure,
evel set method)




A ray tracing result

* Rays or particles may
diverge, so it becomes
highly inaccurate to
reconstruct quantities of
Interests: fields (electric
or electromagnetic, Bohm
potential, etc)

« Figure by O. Runborg



Discontinuous Hamiltonians

H=1/2|&|>+V(X): V(X) is discontinuous-
H=c(Xx)|E|: c(x) Is discontinuous

guantum tunneling effect, semiconductor device
modeling, plasmas, geometric optics, interfaces
between different materials, etc.

Modern theory (KAM theory) and numerical
methods (symplectic scheme) for Hamiltonian
system all assume smooth Hamiltonian



Analytic issues

f+ V.H- V, f-V,H-V,.f=0

« The PDE does not make sense for discontinuous H.
What is a weak solution?

dx/dt = V, H
d¢/dt = -V, H

 How to define a solution of systems of ODEs when the
RHS is discontinuous or/and measure-valued? (DiPerna-
Lions-Ambrosio renormalized solution does not apply
here—only work for BV RHS)



How do we extend the mathematical theory
to singular Hamiltonian system

Our approach: build in correct
physics at the singularity:
transmission, reflection, diffraction,
guantum tunneling, surface

hopping, ...



Classical particles at
barriers

Particles either transmit or reflect
Hamiltonian is conserved:

H* = H-
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Snell-Decartes Law of refraction

« When a plane wave hits the interface, H=c|{| is conserved:
the angles of incident and transmitted waves satisfy (n=c/c)

n, sin 9, = N, sin 6;



Solution to Hamiltonian System with discontinuous
Hamiltonians

 Particles cross over or be reflected by the corresponding transmission or reflection
coefficients probability

« Based on this definition we have also developed particle methods (both deterministic
and Monte Carlo) methods



Eulerian picture: An interface condition

an interface condition for f should be used to connect
(the good) Liouville equations on both sides of the interface.

f(x*, &)=af(x,&)+og f(x*, -£*) for £>0
H(x", £)=H(Xx"&)
og. reflectionrate o transmission rate
artar=1
o, og defined from the original “microscopic” problems
This gives a mathematically well-posed problem that is physically relevant

We can show the interface condition is equivalent to Snell’s law in geometrical optics
(bifurcate at interfaces)



Curved Interface
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ll. Quantum barrier: a multiscale approach
(with , MMS, JCP)

We want to study quantum scale phenomena using a largely
classical scale model.

B Nanotechnology

B Electron transport in semiconductors
B Tunneling diodes

B Quantum dot structures

B Quantum computing




A quantum-classical coupling approach for thin barriers

« Barrier width in the order of De Broglie length, separated
by order one distance

« Solve a time-independent Schrodinger equation for the
local barrier/well to determine the scattering data

« Solve the classical liouville equation elsewhere, using
the scattering data at the interface



A step potential ( V(x)=1/2 H(x) )
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Fia. 5.1. Position densities for the semiclassical Liouville (top) and Schridinger (botfom)
solutions of Example 5.1, The Schradinger solution shows ¢ = {a) 2001, fb) g00~1, {c) 32001
and {d) 12800~ 1. The position density of Liouville solution exhibifs a caustic near x = 0.08 and the
peak is unbounded. For the Schridinger solution the peak reaches a height of 19 for the e = 128001,
The plots are truncated for clarity.



Resonant tunnelling
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Fic. 5.3. Position densities for the numerical semiclassical Liouville (top) and von Neumann
Fio. 5.4. Detodl of Fig. 5.3 showing position densitizs for the numerical semiclassical Licuville (bottom ) solutions of Erample 5.3, The o in the Liouwville plot shows the numerical solution for with
and von Neumann solutions. The o shows the numerical solution for with 150 grid poinis over the l . . i o . '. o '
domain [~1.25,1.25]. The solid line shous the “emact” Liouville solution ard the vor Neumarn 150 grid points over the domain [—1.25,1.25]. The solid line shows the numerical solution for 3200
solution using ¢ = 0.002. grid points. The von Neumann solution is for £ = 0,002,



Circular barrier (Schrodinger with g=1/400)




Circular barrier (semiclassical model)




Circular barrier (classical model)




Entropy

« The semiclassical model is time-
Irreversible.

Loss of the phase information
cannot deal with inteference




decoherence

V(X) = 6(X) + x?/2

Quantum ~—

semiclassical

\



A Coherent Semiclassical Model

Initialization:

« Divide barrier into several thin barriers Bl, B2 -

« Solve stationary Schrddinger equation
+ +
— Wl Wz s
Wl e <« Wz

« Matching conditions
_|_
W, |_ b v, |_ S. v,
+ — J -
W, L LAy, v,



A coherent model

- Initial conditions ~ d(x, p,0) =/ f (%, p,0)

 Solve Liouville equation
dd _od o0 dV od _

P—— =0
dt dt dx dx dp

* Interface condition

- Solution ~ f(x, p,t) =|(x, p,b)



Interference

Define the semiclassical probability amplitude as

Oz, p,t) = flx,p t)e?=r

where # x.p) 18 the phase offset from the initial conditions &z, p, 0) = / flz, p, 0.

Hence, if ®{x.p,t) 15 a solution to the Liouville equation for initial condition
P({x,p, 0}, then foon(x.p.t) 12 a solution to the Liouville equation for imitial

condition feon(x,p, 0). Furthermore, for two solutions @4 and &g with f1 = |34 2
and fo = | By,
[B1 + Po|* = f1 + f2 + 2/ i facos(fy — 6a). (10)

For any two probability densities vy and i with with gy = Jr f1dp = [y4|? and
|2
pa = [ fadp =[],

|91 + 10a|? = p1 + pa + 2/P1p2 cos(By — Ba). (11]



The coherent model

« V(X) =0d(x) + x2/2

Quantum ~—

semiclassical

\




multiple delta barrier (Kronig-Penney)
decoherent model vs Schrodinger




multiple delta barrier (Kronig-Penney)
coherent model vs Schrodinger




multiple delta barrier (Kronig-Penney)
average soln of coherent model vs Schrodinger




lll. Computation of diffraction (with Dongsheng Yin)
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Transmissions, reflections and diffractions
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Figure 1. wave reflection, transmission and diffraction at a Type A interface
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Figure 2: wave reflection, transmission and diffraction at a Type B interface



Hamiltonian preserving+Geometric Theory of
Diffraction

We uncorporate Keller's GTD theory into the interface condition:

(C+) (€ )z+[(c+)271](??!)2_ (4.1)

4.1 The Type B interface

We first discuss the Type B interface. For £ = 0. we use the following partial transmission
and reflection condition at the interface:
S, <V, &, 7)) = af ft,x &L, n) +alfft, <", —&. 7)., & = O. (4.2)
with 7, = 77" and £ obtained from £’ through the comstant condition (1.5).
For £ = 0, there are three possibilities:

1. if + = 0 (partial reflection and transmission), then

ft.x.&. 7)) = afle.x . —&". 7)) + o’ flt.x". &) . (4.3)
2. if v = O (complete reflection ), the interface condition is
SE.=x7. 87w = fE.x". —£". 7). (4.4)
3. if v = 0 (Case I), there will be some diffractions, so the interface condition is
Flt. (=), £, 9) = agl (x(s)) \/’ Cl'gl (X(sq))ei Jo, B, (X(z})dz
e
S Fyx T ()L £ (€A A+ (1 — B, () F (£ (5). £ ). (4.5)
g

here IT', is the line of critical angle

-’;;- o ot (X(Sq)) 2 )
77, — sen (7’ )\/( (x(sq)) ) — 1 (4.6)




If ¢ =0 (case II), there will be some tangentially diffracted waves, so

I D b 2 Bz [ o g
ft.x7, ) = ap,(x) [ ap,(xge " sgn(7') f-(t =g, x5, 0,7, )dnds
S 0

+(1 — agz (x))f_(t, x—, &), (4.7)

| is the average time,

=t &) = Tim f(x =Wk, o).

WJ—

where Eq - ‘ fsi C_d(zz)

In this case, the incident wave tangentially hits the interface from the slow side. Part of

the incident wave transforms into the creeping wave with coefficient 05523 and part of the

incident wave travels through tangentially with coefficient 1 — c}:‘gz.



A type A Interface
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Figure 8: Example 5.3, wavefront of energy density £ and £' O at t = 0.1 (top) and 0.2 {bottom).
Left: £; middle: £9 by GTD; right: £'9 by GO.



Another type B interface
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Figure 6: Example 5.2, wavefront of energy density £ and £
: £ by GTD; right: £ by GO,

Left: £ middle

at t =0.15 (top) and 0.5 {(bottom).



Half plane

Figure 4: Example 5.1, energy density £ O and € at t =02 (top) and 0.3 (bottom). Left: £ () by
GTD; right: &€.



Corner diffraction

lllustrative figure GTD vs full wave simulation

W0, 0.
zu-J 20|
0! 1 0 ///.1
; e
-1 £ 3 /05
05 3 05
o 4 per g 0 9
05~ s 08 08
. 174 4 . 17 L

Region IT SB

Region III

v

Corner




VI: surface hopping (J-Qi-Zhang)

* Born-Oppenheimer (adiabatic) approximation

high ratio between the nuclear and electronic
masses;

electronic Schrodinger equation is first solved,
given electronic energy states that serve as the
potential functions for the nuclear Schrodinger
equation;

when energies of different electronic states are
close, transitions between different energy
states occur and the BO breaksdown



Transition between electronic states

Conical crossing Avoided crossing

Energy

0.0 0.2 0.4 0.6 0.8 1.0
Magnetic field



The Landau-Zener formula

 gives the probability of a diabatic transition
between the two energy states




The surface hopping method (Tully "71)

 Particles follow the classical trajectory
determined by the classical Hamiltonian;
at avoided crossing region they “hop” with
transition probabillity to different energy
level (Hamiltonian system for different
potential surfaces)

* A Monte-Carlo procedure; or particle
splitting



An Eulerian Surface Hopping method

« For two-energy level system we use two Liouville
equations, corresponding to two Hamiltonians, with an
Interface condition for Landau-Zener transition

Oty + Viehs - Vitir = Vihe - Vit =0, (Ex k) e R7x(l 7=12,

Jrx.k) = Vg our(x.k), 7=1,2,

=

b | =¥ |
™

]

. _1- L
Ji(xy, kg ) -
I'(xo.ko) 1-T(xo,ko) ) \ Jalxg.ky)

[ 1-T(xo.kg) T(xg.ko) hixg.ky)
r -+ Ty -
_)IL]'L}'L[] .k[] | "



Linear isotropic potential

upper level population
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Advantage of Eulerian method

No Monte-Carlo procedure
High order accuracy

Easily adopted to any number of energy states—
number of Liouville equations fixed

Arise naturally from semiclassical limit of
systems of Schrodinger equation via the Wigner
transform (Spohn, Teufel, Hagedorn, Lasser,
Schutte, etc.)



V. An Eulerian Gaussian-Beam Method (J-Wu-Yang)

Geometric optics or semiclassical limit blows up density
at caustics. Gaussian beam is more accurate at
caustics and preserves the Maslov-Keller phase shift

o5 (tox, yg) = Alt,y)eT bew)/e (2.1)

where y = y(t,yy) and T'(t, 2, y) is given by the Taylor expansion
Tlt.xe,y) = .5|_f.-y,|+p|_f.-y,l-l,;r—y;+3|la?—-y; M(t,y)(x—y)+O(|lz—yl|).

(2.2)
in which (& — y)" is the transpose of (z —y). Here S e R, p e B*, A € C,
M = C*"  The imaginary part of M will be chosen so that (2.1) has a
Gaussian beam profile. We call (2.1) as the beam-shaped ansatz.



Lagrangian formulation (Popov, Hill, Heller)

dy _
dt 0 )
1 yl. 'y y .I — y '
E — _I'I"..-—‘ :ﬂ-l';- . I:I I:I T k
dt p0,ys) = VaSolyg).
d M o _.”.g T"E Vv o . 2D . .
T A — VgV, .-qlfll|_|.,y|:|,| = ‘Fm.SmyDJ + 21,
.S 1 ) S0 I = Splyq)
by 1 A0, yg) = Aolyg).

a2



The Lagrangian beam summation

*f*fal'f-wi=f (,_) rele — y(t, wg) Jivra(t, ®, yg )dyy. (:

[iE=

e

The discrete form of (2.258) in a bounded domain is given by

Jn'ir-yl:l i
O (ta) =) ('?*n-) ro( — y(t. 1) )l (t e, uh) Ay, (
j=1 7



The Eulrian formulation

Lf=06,f+& -V, f-V V.V, f
« For velocity or phase:
Solve L$p=0 ¢eCn
with ¢(0,y,8)= -1 y+ (&-V, Sp)
(note Re(¢)=0 at E&=u=V, S)
» For Hessian: M=-V, ¢ (V; ¢)™
« For amplitude: Solves L y=0, ye R
with (0, y, £)=|Aql*
then A(t, x)= (det (V: ¢)1) y)!/? (principle value)

The complexity is comparable to geometric optics or semiclassical limit;
only now that ¢ € C" rather than R®



A numerical example (¢=104)

» Density * Velocity

-
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Summary

Liouville equation based Eulerian computational methods
for guantum dynamics:

 Partial transmissions and reflections, diffractions, and
guantum barriers

« Surface hopping

« (Gaussian beam methods as an improvement of the
classical solver

« Computational cost is classical, yet certain important
guantum information are captured

 can use local level set method to further reduce the cost



Future projects

« Gaussian beam for interface and quantum
barriers

« Coherant semiclassical models for multi-D
guantum barriers

« Gaussian beam or coherent quantum-
classical coupling for surface hopping



Computational cost (¢=10-°)

« Full simulation of original problem for
AX~ At~ O(g)=0(10°)

Dimension total cost

2d, 0(1018)

3d 0(1024)

* Liouville based solver for diffraction

AX~ At~ O(3) =0(10?)

Dimension total cost

2d, 0O(1019)

3d 0(1014)

Can be much less with local mesh refinement



