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outline

• Classical mechanics: Hamiltonian system, 

discontinuous Hamiltonian, transmission and 

reflection  (J-Wen)

• Quantum barriers: quantum-classical coupling, 

interference (J-Novak)

• Diffraction: use GTD (J-Yin)

• Surface hopping (J-Qi-Zhang)

• Gaussian beam method (J-Wu-Yang)

• conclusion



I: Classical Mechanics for singular Hamiltonians

• a Hamiltonian system:

dx/dt = r H             

d/dt = -rx H

H=H(x, ) is the Hamiltonian

Classical mechanics:  H=1/2 ||2+V(x)  (=> Newton‟s second law)

Geometrical optics:     H = c(x) ||

computational method based on solving the Hamiltonian system is referred to as the particle method, or a 
Lagrangian method

• Phase space representation:

ft + r H¢rx f - rx H ¢r f = 0

f(t,  x, ) is the density distribution of a classical particle at 

position x, time t, with momentum 

Computational methods based on solving the Liouville equation will be refereed to as the Eulerian method

The Liouville equation can be solved by method of characteristics if H is smooth



Lagrangian vs Eulerian

o Lagrangian:  simple, efficient in high 

dimension

particles (rays) may diverge: loss of 

accuracy, remeshing (increasing particles) 

is needed which may be complicated

o Eulerian: solving PDEs on a fixed mesh--

high order accuracy;  computational cost 

higher (reducing cost: moment closure, 

level set method)



A ray tracing result

• Rays or particles may 

diverge, so it becomes 

highly inaccurate to 

reconstruct quantities of 

interests: fields (electric 

or electromagnetic, Bohm 

potential, etc)

• Figure by O. Runborg



Discontinuous Hamiltonians

• H=1/2||2+V(x): V(x) is discontinuous- potential 
barrier, 

• H=c(x)||: c(x) is discontinuous-different index of 
refraction

• quantum tunneling effect, semiconductor device 
modeling, plasmas, geometric optics, interfaces 
between different materials, etc.

• Modern theory (KAM theory) and numerical 
methods (symplectic scheme) for Hamiltonian 
system all assume smooth Hamiltonian 



Analytic issues

ft + r H¢rx f - rx H ¢r f = 0

• The PDE does not make sense for discontinuous H.  
What is a weak solution?

dx/dt = r H             

d/dt = -rx H

• How to define a solution of systems of ODEs when the 
RHS is discontinuous or/and measure-valued? (DiPerna-
Lions-Ambrosio renormalized solution does not apply 
here—only work for BV RHS)



How do we extend the mathematical theory 

to  singular Hamiltonian system

Our approach: build in correct 
physics at the singularity:  
transmission, reflection, diffraction, 
quantum tunneling, surface 
hopping, …



Classical particles at 

barriers

Particles either transmit or reflect

Hamiltonian is conserved:

H+ = H-



Snell-Decartes Law of refraction

• When a plane wave hits the interface,  H=c|»|  is conserved:

the angles of incident and transmitted waves satisfy (n=c0/c)



Solution to Hamiltonian System with discontinuous 

Hamiltonians

R T

• Particles cross over or be reflected by the corresponding transmission or reflection 
coefficients (probability)

• Based on this definition we have also developed particle methods (both deterministic 
and Monte Carlo) methods



Eulerian picture: An interface condition

an interface condition for f should be used to connect

(the good) Liouville equations on both sides of the interface.

• T, R defined from the original “microscopic” problems

• This gives a mathematically well-posed problem that is physically relevant

• We can show the interface condition is equivalent to Snell‟s law in geometrical optics

• A new method of characteristics (bifurcate at interfaces)

f(x+, +)=Tf(x-,
-
)+R f(x+, -+)  for +>0

H(x+, +)=H(x-,-)
R:  reflection rate    T:  transmission rate

R+T=1



Curved interface



II. Quantum barrier: a multiscale approach 

(with K. Novak, MMS, JCP)



A quantum-classical coupling approach for thin barriers

• Barrier width in the order of De Broglie length, separated 

by order one distance

• Solve a time-independent Schrodinger equation for the 

local barrier/well to determine the scattering data 

• Solve the classical liouville equation elsewhere, using 

the scattering data at the interface



A step potential ( V(x)=1/2 H(x) )



Resonant tunnelling



Circular barrier (Schrodinger with =1/400)



Circular barrier (semiclassical model)



Circular barrier (classical model)



Entropy

• The semiclassical model is time-

irreversible.  

Loss of the phase information

cannot deal with inteference



decoherence

V(x)  = (x) + x2/2

Quantum

semiclassical



A Coherent Semiclassical Model

Initialization: 

• Divide barrier into several thin barriers 

• Solve stationary Schrödinger equation
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• Matching conditions



A coherent model
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Interference



The coherent model

• V(x)  = (x) + x2/2

Quantum

semiclassical



multiple delta barrier (Kronig-Penney)

decoherent model vs Schrodinger



multiple delta barrier (Kronig-Penney)

coherent model vs Schrodinger



multiple delta barrier (Kronig-Penney)

average soln of coherent model vs Schrodinger



III. Computation of diffraction (with Dongsheng Yin)



Transmissions, reflections and diffractions 

(Type A interface)



Type B interface



Hamiltonian preserving+Geometric Theory of 

Diffraction

• We uncorporate Keller‟s GTD theory into the interface condition:





A type A interface



Another type B interface



Half plane



Corner diffraction

Illustrative figure GTD vs full wave simulation



VI: surface hopping (J-Qi-Zhang)

• Born-Oppenheimer (adiabatic) approximation

high ratio between the nuclear and  electronic 

masses;

electronic Schrodinger equation is first solved, 

given electronic energy states that serve as the 

potential functions for the nuclear Schrodinger 

equation;

when energies of different electronic states are 

close ,  transitions between different energy 

states occur and the BO breaksdown  



Transition between electronic states

Conical crossing Avoided crossing



The Landau-Zener formula

• gives the probability of a diabatic transition 

between the two energy states



The surface hopping method (Tully „71)

• Particles follow the classical trajectory 

determined by the classical Hamiltonian; 

at avoided crossing region they “hop” with 

transition probability to different energy 

level (Hamiltonian system for different 

potential surfaces)

• A Monte-Carlo procedure; or particle 

splitting 



An Eulerian Surface Hopping method

• For two-energy level system we use two Liouville 

equations, corresponding to two Hamiltonians, with an 

interface condition for Landau-Zener transition



Numerical Examples

Linear isotropic potential John-Teller potential



Advantage of Eulerian method

• No Monte-Carlo procedure

• High order accuracy

• Easily adopted to any number of energy states—

number of Liouville equations fixed

• Arise naturally from semiclassical limit of 

systems of Schrodinger equation via the Wigner 

transform (Spohn, Teufel, Hagedorn, Lasser, 

Schutte, etc.) 



V. An Eulerian Gaussian-Beam Method (J-Wu-Yang)

• Geometric optics or semiclassical limit blows up density 

at caustics. Gaussian beam is more accurate at 

caustics and preserves the Maslov-Keller phase shift



Lagrangian formulation (Popov, Hill,  Heller) 



The Lagrangian beam summation



The Eulrian formulation

L f = t f +  ¢ry f - ryV ¢r f 

• For velocity or phase:

Solve L  = 0     2 Cn       

with (0,y,)= -i y+ (-ry S0)

(note Re()=0 at =u=ry S)

• For Hessian:  M=-ry  (r )-1

• For amplitude:  Solves L =0,  2 R

with (0, y, )=|A0|
2

then A(t, x)= (det (r )-1) )1/2 (principle value)

The complexity is comparable to geometric optics or semiclassical limit; 
only now that  2 Cn rather than Rn



A numerical example (=10-4)

• Density • Velocity



Error comparison



Summary

Liouville equation based Eulerian computational  methods 

for quantum dynamics:

• Partial transmissions and reflections, diffractions, and 

quantum barriers

• Surface hopping

• Gaussian beam methods as an improvement of the 

classical solver

• Computational cost is classical, yet certain important 

quantum information are captured

• can use local level set method to further reduce the cost



Future projects

• Gaussian beam for interface and quantum 

barriers

• Coherant semiclassical models for multi-D  

quantum barriers

• Gaussian beam or coherent quantum-

classical coupling for surface hopping



Computational cost (=10-6)

• Full simulation of original problem for 

 x »  t » O()=O(10-6)

Dimension     total cost

2d, O(1018)
3d O(1024)

• Liouville based solver for diffraction    

 x »  t » O(1/3) = O(10-2)  

Dimension     total cost

2d, O(1010)
3d O(1014)

Can be much less with local mesh refinement


