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Path Integral Molecular Dynamics:

PIMD uses the ring polymer trajectories
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as a sampling tool to calculate exact values of static
equilibrium properties such as
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Ring Polymer Molecular Dynamics:

RPMD uses the same trajectories to calculate approximate
Kubo-transformed correlation functions of the form
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Ring Polymer Molecular Dynamics

The RPMD approximation to
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Classical molecular dynamics in an extended phase space!



Properties of RPMD:

1. Exact in the limit as t — 0.
2. Exact in the classical (high temperature) limit.
3. Exact in the harmonic limit (for linear A and/or B).

4. Exact when A = 1 (for all B).

5. Correct time-reversal, time-translation, and detailed balance symmetries.



In short, RPMD includes both:
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tunneling zero point energy
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for a parabolic barrier) in the low T limit)

But it neglects QM interference effects in the real-time dynamics (no e**#¢/%),



Applications of RPMD:
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. Quantum diffusion in liquid para-hydrogen (2005).

Quantum diffusion in liquid water (2005).
Neutron scattering from liquid para-hydrogen (2006).
Proton transfer in a polar solvent (2008).
Diffusion of H isotopes in water and ice (2008).
Gas phase chemical reaction rates (2009).
Dynamics of the solvated electron (2009).

Diffusion of H isotopes in transition metals (2010).
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Quantum diffusion in liquid p-Hs:
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Inelastic neutron scattering from liquid p-Hy at 14 K:
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Gas phase chemical reaction rates:

Iog10[k(T)/cm33‘1molecule'1]
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H+H, reaction on the LSTH potential
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2. Ring polymer contraction

(a) A RPMD simulation requires around n times the computational effort
of a classical MD simulation:




2. Ring polymer contraction

(a) A RPMD simulation requires around n times the computational effort
of a classical MD simulation:

(b) And a converged calculation requires n > Bhwmax, where wpay is the
highest frequency present in the problem:
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Bhw = 5 at 300 K
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Bhw =5 at 300 K
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Ring polymer contraction:
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Some results for the SPC/F water model:
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Some results for the SPC/F water model:
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Electrostatic interactions
dominate the calculation

(Ewald sum,).




O-0 radial distribution function
(PIMD):
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Velocity autocorrelation function
(RPMD):
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A refinement:

(a) Contracting Vipter is a bit naive: Coulomb and Lennard-Jones potentials
also contain some “hard” short-range components.

(b) If we could remove these components, perhaps we could contract the ring
polymer all the way to its centroid, and evaluate the remaining long-range
interactions with purely classical effort:

Vinter () = Vs(q) + V.(q)
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Fractional error in the centroid approximation to the Coulomb interaction
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So let’s split the Coulomb potential into short- and long-range parts:

Vi(rij) = Vs(rij) + Vi(rij)

Vs(riz) = [1 = f(riy)] V(ri)

Vi(rij) = f(rij)V(ri;)

f(rij) = erf (\/7ri; /o)




And only apply the centroid approximation to the long-range part:
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This works extremely well in practice. Eg:
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And since all electrostatic interactions beyond r;; = o are evaluated on the ring
polymer centroid it gives a method with purely classical computational effort in
the limit of infinite system size:
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3. Conclusions and future work

1. We can now obtain well-converged path-integral results for simple point
charge water models with little more than classical computational effort
in the limit of large system size.

2. We have also recently developed a ring polymer contraction scheme for
polarizable water models, so that we can look beyond the homogeneous
liquid.

3. Lots of interesting applications should now be possible (to the surfaces
of water and ice and other interfaces, the water phase diagram, aqueous
solvation dynamics, and so on). Eg:



A melting point stmulation:

Initial configuration
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A melting point stmulation:

Initial configuration

“Completely” melted
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A melting point stmulation:

Initial configuration

“Completely” melted
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