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Introduction

e Sparse representations have recently received wide attention
because of their numerous potential applications.

e These applications are all based on approximation of input
signals with a linear combination of a large dependent
collection of signals (known as a dictionary).

e Because many approximations of input signals in terms of
elements of a pre-defined dictionary exist, the sparsity of
representation is imposed by penalizing nonzero coefficients. In
particular, one may look for the representation of a signal with

/

smallest number of non-zero elements.
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4 Notation ‘ /

To this end, let a frame F = {¢1, ¢2, -, ¢n} of N non-zero
vectors in an N — K dimensional subspace W < C" be given
such that F spans W.

Any vector r in W can be written in a non-unique way as the

sum of elements of F. Let r = MUMMH ¢;®; be such a
representation.
We define ||r||o. # to be the smallest number of non-zero

coefficients of any such expansion. Also, for an arbitrary vector
c=(ci,c, -,cn) € CY, we define ||c||p to be the number of

non-zero elements of c.

Thus ||r||o,# is simply the min(||c||o) over all possible
expansions ¢ of r as above. \
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The Main Problem

e A main problem of interest is

— The Most Compact Representation (MCR)

Problem: Given F a frame spanning W, and r € W find

. N .
an expansion r = ) .~ ¢;¢; for which ¢ = (c1,¢c2, -+, cn)

has minimum ||c||o, i.e. ||r]jo.7z = ||c|lo-

e This optimization problem is in general difficult to solve. In
this light, much attention has been paid to solutions minimizing
|c|li = MUMMH lc;| instead, and then establishing criteria under

which the minimizing c also solves the MCR Problem.

\_ /
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4 N
Our Approach -

e In this talk, we take a different approach. We construct frames
JF for which the :

— Decoding Problem: Whenever r has a representation c
with ||c|lo < (V. — K)/2, then find ¢

can be solved with a unique answer for which the solution
coincides with that of the MCR Problem. The solution to the
Decoding problem will be found using algebraic methods with
running time O(N (N — K)).

\_ /
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Frames and Associated Codes

e Consdier a frame F = {¢1, 2, -+, dn} of N non-zero vectors
that span an N — K dimensional subspace W < C" as above.

Consider

N
YV ={d = (dq,ds,-,dn) € C" forwhich MQR& = 0}

1=1
We refer to V as the underlying code of frame F.

e The vector space V is clearly a K dimensional subspace of C¥ .
If r € YV can be represented by c with respect to the above
frame F, then all possible representations of r are given by

c—V={c—-d|deV}

e Thus the problem of finding the shortest representation of r is

equivalent to finding d € V which minimizes ||c — d||o. \
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Main Idea ‘ /

e [f one thinks of V as a linear code defined over the field of

complex numbers, and of r as the received word, the MCR
Problem is equivalent to finding the error vector e = ¢ — d of
minimum (Hamming weight) ||e||o over all the codewords

d € V. Problems of this nature have been widely studied in the
language of the coding theory, however these codes are
typically defined over finite fields.

we construct frames that generalize Reed-Solomon codes using
Vandermonde matrices. Under the assumption that

0.F < (N — K)/2, a Reed-Solomon decoding algorithm
(which corrects up to half of the minimum distance bound) can
find the solution to the decoding problem and the MCR
problem. Such decoding algorithms and their improvements are

I7]

/ well-known in the coding theory literature. \




DEAS-Harvard

\ Reed-Solomon Frames /

e Consider the matrix given below:

2 N—-K-1
\ H NH NH . o o « o o NH_. /
2 N—-K-1
H_r NM NM o o o « o o NM
2 N—-K-1
A= 1 23 2z5 -~ -+ 23 (1)
2 2|N|H\
/ H_r NZ N.N/\ o o o « o o NZ
where z;,, 1 = 1,2,---, N are distinct, non-zero complex

numbers. The following

— Condition I: Any arbitrary set of N — K distinct rows of
A are linearly independent

holds. This is clear since any such N — K rows form a

/ Vandermonde matrix with non-zero determinant. \
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Reed-Solomon Frames

e We define frame F to consist of the rows of A, i.e.

F={t= (L2}, 23 o 2V Dforj =1, N}, (2

and refer to it as a Reed-Solomon frame.

e Let VW be the subspace spanned by the elements of F. As in
the above, one can think of WW as an N — K dimensional

subspace of CV consisting of N vectors.

\_ /
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Reed-Solomon Codes

e The associated code V is given by the vectors

d = A&f &wg P, &Zv for which

where

ﬁ&s

N
.| i1
IM &f&. .
J=1

Clearly the subspace (code) V is K dimensional.
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Reed-Solomon Codes

The code V has the following interesting property.

Lemma 1 For any non-zero vector v € V, we have
|v|lo > N — K. Moreover, there exist vectors v € V with
|Vl[o =N —- K + 1.

In the terminology of coding theory the code V is an
[N, K, N — K + 1] linear code.

We will decode this code up to half minimum distance bound.

Equivalently, we solve the Decoding problem for frame F.

Lemma 2 Given that ||r|o,.r < (N — K)/2, the solution to the
Decoding problem is unique.

12



DEAS-Harvard

-~

\_

4 The Decoder ‘ /

e We next provide a polynomial time algorithm that outputs the

sparsest representation of r under the assumption that
[rflo,7 < (N — K)/2.

Let r = MU,W./\HH r;¢; be an arbitrary representation of r in this
frame. A candidate r can be easily computed using

O((N — K)?) operations. For example if we let
rN_x+1=---=ry =0, then r{,r9,---,rny_x can be
computed by multiplying the inverse of a Vandermonde matrix

(that can be once computed off-line) by r, requiring at most
2(N — K)? operations.

o We fix the representation (r1,7r9,---,7rxn) of r and seek to
compute the most compact description e = (e, ez, -+, en) of
r=3"" e;¢; in this frame with |le[jo < (N — K)/2.

/

13
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4 The Decoder ‘

e Clearly
AﬁHvﬁwg...gﬁ;Zv”@l_lﬁr
where d = A&T&wv . .v&zv c V.

o Let

d' = Mui v

and
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N
P i—1
rt = M Tz
j=1

then by Equation (3), we have

r =e€

fori=1,2--- N—K.
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The Key Equation

e Let the nonzero elements of e = (eq, €3, -

01,102, - ,1e Where w < (N — K)/2. For j =1,2,-

Xj =2z and Y; = e;,.

Lemma 3 Define

HM_ATN
MUM\ [T 0-x

J=1,57#1
©. @)

mzv be in

Slz] = MU ezt

=1

,w, let

(10)

(11)

16
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then

anywhere in the disk |z| < mini<j<n(]z;|71).

(12)

17
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g Eroor)

o Clearly

‘ S

X

Under the assumption of |z| < minj<,;<n(|z;|7!), we have

s e I

7=0

Replacing this in Equation (13), we have
vi—1_j—1
RN A
1=1 HH

/ Clearly ¢! = > | V; X m ~!. Thus the result follows.

‘ S

~

(13)

(14)

/
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\ 4 The Decoder ‘ /

e Since deg(w|x]) < Q<m|5 — 1 and deg(o|z]) < Q<m|5 only

el,e?,---,eN =K are needed to compute w[z] and o[z] from the

above (for instance by solving a linear system of equations for

the coefficients of w(x| and o[z]).

e It is well-known that this task can be achieved more efficiently
using the Euclid division algorithm.

N—-K

e In fact, letting Si|z] =, e z~1 one can write:

wlz] = S1|z]o|z] mod(z %)

for all z € C. The computation of w(z] and ¢|z]| can be
performed using the FEuclid division algorithm as described for
instance in MacWilliams and Sloane (Section 9, Chapter 12).

/ The number of operations required is clearly O(N(N — K)). \

19
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The Original Euclid Algorithm

e Given polynomials r_1[z] and rg[z] with
deg(r0[z]) < deg(r—1]|z]), we can make repeated divisions to
obtain the series of equations:
r1lz] = qulz]rolz] 4+ milz] deg(rilz]) < deg(rolz]),
rolz] = qulz]ri[z] + ralz] deg(ralz]) < deg(ri]2]),

re—2l2] = qrlzlre—1lz] + rilz] deg(relz]) < deg(rr—1]2]),

re-1lz] = qrerlzlralz];

then r|z] is the ged of r_1[z] and ro|z].

20
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The Original Euclid Algorithm

o Let U_1[2] =0, Uplz] =1, V_1[z] =1 and Vj[z] = 0.
e Define

Q«L& = QL&Q«@.ILN_ + Q«.IMT\U\T
Vilz] = qilz]Vi-alz] + Vialz],

then r|z] is the ged of r_1[z] and rp|z].

(15)
(16)
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Modified Euclid Algorithm

N.Zlmm

o Let r_q|z] = and rg[z] = S1[z] and proceed with the

Euclid original algorithm until reaching an r;[z] such that

EmS 3 (17)

(N - K)

N Y
Then o[z] = 6U;[z] and w[z] = (—1)'dr;[2] where § is a constant
chosen such that ¢[0] = 1.

deg(ri[z]) <

deg(r;_1]z] > (18)

/

22



DEAS-Harvard

Decoding Algorithm

e Once o|z] and w|z] are found, we first compute o[z] for
2, 25, -+, 25" This step only requires O(N(N — K))
computations (since the required powers of z;, j =1,2,--- N

must only be once computed off-line).

In this way, the roots NQMHQ .-+, 271 of o[z] (and hence the

tw

locations of non-zero elements of e) can be found. The values

€., €. can then be found using the formula (attributed to

w

v, =wX N/ [ (- XX = Xw(X; /o' [X, (19)
i=1,i£j

where o'[z] is the derivative of o|z]. \

23
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Stability Issues

e What if r is a noisy version of a sparse signal with respect to

F, or it is approximately sparse?

e This can be handled using ideas from ”adaptive equalization

theory”.

e Three facts will be used:

— There is a recurrence with constant coeflicients
Ag, Ay, -+, Ay_1 such that

eVt = AgeN T 4 A N2 o Ay e

for j =1,2,3. 4.

24
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— Ifolz] =Y. yoizi and 09 = 1,01, -+, 0y are taps of an

FIR filter corresponding to an ”equalizer” for a frequency
selective channel, then the infinite length received sequence

e?, el e?, .. will generate equalizer output sequence

w—1
Wo, W1, Ww-1,0,0,0,0,- -, where w|z] = > ._, w;2;.

QZIN‘IH

— Noisy versions of €2, - - -, are known.

e (Casting the problem in this framework. we can apply
techniques from vast theory of adaptive equalization to find

very good estimates of o[z] and w|z].

e These techniques are known to give optimal performance in low

noise regime.

\_ /
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e Our constructions can be easily extended to provide frames

4 Extensions ‘

based on analogs of algebraic geometry codes and many other
codes, for which the decoding can be achieved using algebraic

techniques.

Another extension to our results can be achieved using
well-known list decoding algorithms for Reed-Solomon codes
(e.g. Sudan’s work). By applying these algorithms, a list of all
sparse representations of a given vector r in the Reed-Solomon

frame can be constructed.

/
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