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The Signal Recovery Problem
❦

Let s be an m-sparse signal in Rd, for example

s =
[
0 −7.3 0 0 0 2.7 0 1.5 0 . . .

]T
Use measurement vectors x1, . . . ,xN to collect N nonadaptive linear

measurements of the signal

〈s, x1〉 , 〈s, x2〉 , . . . , 〈s, xN〉

Q1. How many measurements are necessary to determine the signal?

Q2. How should the measurement vectors be chosen?

Q3. What algorithms can perform the reconstruction task?
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Motivations
❦

Medical Imaging

❧ Tomography provides incomplete, nonadaptive frequency information

❧ The images typically have a sparse gradient

❧ Reference: [Candès–Romberg–Tao 2004]

Sensor Networks

❧ Limited communication favors nonadaptive measurements

❧ Some types of natural data are approximately sparse

❧ References: [Haupt–Nowak 2005, Baraniuk et al. 2005]
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Q1: How many measurements?
❦

Adaptive measurements

Consider the class of m-sparse signals in Rd that have 0–1 entries

It is clear that log2

(
d
m

)
bits suffice to distinguish members of this class.

By Sterling’s approximation,

Storage per signal: O(m log(d/m)) bits

A simple adaptive coding scheme can achieve this rate

Nonadaptive measurements

The näıve approach uses d orthogonal measurement vectors

Storage per signal: O(d) bits

But we can do exponentially better. . .
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Q2: What type of measurements?
❦

Idea: Use randomness

Random measurement vectors yield summary statistics that are

nonadaptive yet highly informative. Examples:

Bernoulli measurement vectors

Independently draw each xn uniformly from {−1,+1}d

Gaussian measurement vectors

Independently draw each xn from the distribution

1
(2π)d/2

e−‖x‖2
2/2
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Connection with Sparse Approximation
❦

Define the fat N × d measurement matrix

Φ =

 xT
1
...

xT
N


The columns of Φ are denoted ϕ1, . . . ,ϕd

Given an m-sparse signal s, form the data vector v = Φ s

 v1
...

vN

 =

ϕ1 ϕ2 ϕ3 . . . ϕd




s1

s2

s3
...
sd


Note that v is a linear combination of m columns from Φ
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Orthogonal Matching Pursuit (OMP)
❦

Input: A measurement matrix Φ, data vector v, and sparsity level m

Initialize the residual r0 = v

For t = 1, . . . ,m do

A. Find the column index ωt that solves

ωt = arg maxj=1,...,d |〈rt−1, ϕj〉|

B. Calculate the next residual

rt = v − Pt v

where Pt is the orthogonal projector onto span {ϕω1, . . . ,ϕωt}

Output: An m-sparse estimate ŝ with nonzero entries in components

ω1, . . . , ωm. These entries appear in the expansion

Pm v =
∑T

t=1
ŝωt ϕωt
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Advantages of OMP
❦

We propose OMP as an effective method for signal recovery because

❧ OMP is fast

❧ OMP is easy to implement

❧ OMP is surprisingly powerful

❧ OMP is provably correct

The goal of this lecture is to justify these assertions
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Theoretical Performance of OMP
❦

Theorem 1. [T–G 2005] Choose an error exponent p.

❧ Let s be an arbitrary m-sparse signal in Rd

❧ Draw N = O(p m log d) Gaussian or Bernoulli(?) measurements of s

❧ Execute OMP with the data vector to obtain an estimate ŝ

The estimate ŝ equals the signal s with probability exceeding (1 − 2 d−p).

To achieve 99% success probability in practice, take

N ≈ 2 m ln d
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Flowchart for Algorithm

Specify a coin-tossing 
algorithm, including the 
distribution of coin flips

Flip coins and 
determine 

measurement 
vectors 

Adversary 
chooses arbitrary  
m-sparse signal 

Measure signal,
Run greedy 

pursuit
 algorithm

Output signal

knowledge of algorithm and 
distribution of coin flips

no knowledge of 
measurement vectors

no knowledge of 
signal choice
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Empirical Results on OMP
❦

For each trial. . .

❧ Generate an m-sparse signal s in Rd by choosing m components and

setting each to one

❧ Draw N Gaussian measurements of s

❧ Execute OMP to obtain an estimate ŝ

❧ Check whether ŝ = s

Perform 1000 independent trials for each triple (m,N, d)

Signal Recovery from Partial Information (CSCAMM, 10 May 2005) 11



Percentage Recovered vs. Number of Gaussian Measurements
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Percentage Recovered vs. Number of Bernoulli Measurements
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Percentage Recovered vs. Level of Sparsity
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Number of Measurements for 95% Recovery
Regression Line: N = 1.5 m ln d + 15.4
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Number of Measurements for 99% Recovery

d = 256 d = 1024
m N N/(m ln d) m N N/(m ln d)
4 56 2.52 5 80 2.31
8 96 2.16 10 140 2.02

12 136 2.04 15 210 2.02
16 184 2.07
20 228 2.05

These data justify the rule of thumb

N ≈ 2 m ln d
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Percentage Recovered: Empirical vs. Theoretical
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Execution Time for 1000 Complete Trials
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Elements of the Proof I
❦

A Thought Experiment

❧ Fix an m-sparse signal s and draw a measurement matrix Φ

❧ Let Φopt consist of the m correct columns of Φ

❧ Imagine we could run OMP with the data vector and the matrix Φopt

❧ It would choose all m columns of Φopt in some order

❧ If we run OMP with the full matrix Φ and it succeeds, then it must

select columns in exactly the same order
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Elements of the Proof II
❦

The Sequence of Residuals

❧ If OMP succeeds, we know the sequence of residuals r1, . . . , rm

❧ Each residual lies in the span of the correct columns of Φ

❧ Each residual is stochastically independent of the incorrect columns
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Elements of the Proof III
❦

The Greedy Selection Ratio

❧ Suppose that r is the residual in Step A of OMP

❧ The algorithm picks a correct column of Φ whenever

ρ(r) =
max{j : sj=0} |〈r, ϕj〉|
max{j : sj 6=0} |〈r, ϕj〉|

< 1

❧ The proof shows that ρ(rt) < 1 for all t with high probability
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Elements of the Proof IV
❦

Measure Concentration

❧ The incorrect columns of Φ are probably almost orthogonal to rt

❧ One of the correct columns is probably somewhat correlated with rt

❧ So the numerator of the greedy selection ratio is probably small

Prob
{

max
{j : sj=0}

|〈rt, ϕj〉| > ε ‖rt‖2

}
. d e−ε2/2

❧ But the denominator is probably not too small

Prob

{
max

{j : sj 6=0}
|〈rt, ϕj〉| <

(√
N

m
− 1 − ε

)
‖rt‖2

}
. e−ε2 m/2
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Another Method: `1 Minimization
❦

❧ Suppose s is an m-sparse signal in Rd

❧ The vector v = Φ s is a linear combination of m columns of Φ
❧ For Gaussian measurements, this m-term representation is unique

Signal Recovery as a Combinatorial Problem

minbs ‖ŝ‖0 subject to Φ ŝ = v (`0)

Relax to a Convex Program

minbs ‖ŝ‖1 subject to Φ ŝ = v (`1)

References: [Donoho et al. 1999, 2004] and [Candès et al. 2004]
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A Result for `1 Minimization
❦

Theorem 2. [Rudelson–Vershynin 2005] Draw N = O(m log(d/m))
Gaussian measurement vectors. With probability at least (1 − e−d), the

following statement holds. For every m-sparse signal in Rd, the solution to

(`1) is identical with the solution to (`0).

Notes:

❧ One set of measurement vectors works for all m-sparse signals

❧ Related results have been established in [Candès et al. 2004–2005] and

in [Donoho et al. 2004–2005]
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So, why use OMP?
❦

Ease of implementation and speed

❧ Writing software to solve (`1) is difficult

❧ Even specialized software for solving (`1) is slow

Sample Execution Times

m N d OMP Time (`1) Time

14 175 512 0.02 s 1.5 s
28 500 2048 0.17 14.9
56 1024 8192 2.50 212.6
84 1700 16384 11.94 481.0

112 2400 32768 43.15 1315.6
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Randomness
❦

In contrast with `1, OMP may require randomness during the algorithm

Randomness can be reduced by

❧ Amortizing over many input signals

❧ Using a smaller probability space

❧ Accepting a small failure probability
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Research Directions
❦

❧ (Dis)prove existence of deterministic measurement ensembles

❧ Extend OMP results to approximately sparse signals

❧ Applications of signal recovery

❧ Develop new algorithms
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