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Background 

Currently, in the U.S. there is a movement to construct one NWP model (NWS, Navy, 
Air Force – other partners include NASA and DOE). This National Board 
(NUOPC=National Unified Operational Prediction Capability) aims to develop a new 
model that is: 

1.  Highly scalable on current and future computer architectures 
2.  Global model that is valid at the meso-scale (i.e., non-hydrostatic) 
3.  Applicable to medium-range NWP and decadal time-scales 

It would be ideal to couple such a model with a coastal ocean model. 



Motivation 

Our goal is to construct numerical methods for non-hydrostatic mesoscale and global  
atmospheric models (for NWP applications) as well as coastal ocean models for storm- 
surge modeling. 

Our aim is to build a modeling framework with the following capabilities: 
1.  Highly scalable on current and future computer architectures (exascale computing 

and beyond and GPUs) 
2.  Flexibility to use a wide range of grids (e.g., statically and dynamically adaptive) 
3.  Model that is accurate, robust, and fully conservative 

Our coupling strategy is as follows: 
1.  Develop a high-order discontinuous Galerkin global/regional atmospheric model. 
2.  Develop a high-order discontinuous Galerkin coastal ocean model. 
3.  Combine them  using high-order adaptive/unstructured triangular prisms. 
4.  Resolving the disparate time-scales via extrapolation (multi-rate) methods. 
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1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
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Talk Summary 

1.  New models need to exploit available computers 
•  From Terascale to Petascale/Exascale Computing 
•  10 of Top 500 are already in the Petascale range 
•  3 of top 10 list are GPU-based machines 

2.  Numerical methods in new GFD models 
3.  What should we aim for in our new models 
4.  Where we plan to head with our GFD models 



Performance of a Global/Mesoscale  
Non-Hydrostatic Model  

(2 Million Grid Points) (16 Million Grid Points) 



Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 

•  Time-Integration is important (e.g., explict, semi-implicit, fully-implicit) 
•  Spatial Discretization methods is how we are able to take advantage of 

Parallel computers (i.e., domain decomposition of the physical grid) 
3.  What should we aim for in our new models 
4.  Where we plan to head with our GFD models 



Element-based Galerkin (EBG) Methods 
(Definition and Examples) 

•  An element is chosen to be the basic building-block of the discretization 
and then a polynomial expansion is used to represent the solution inside 
the element 



Element-based Galerkin Methods  
in a Nutshell 



•  Primitive Equations: 

•  Approximate the solution as: 

–  Interpolation O(N) 

•  Write Primitive Equations as: 

•  Weak Problem Statement: Find 

–  such that  
•  Integration O(2N) 

Spatial Discretization 
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•  Integral Form: 

•  Matrix Form: 

•  Where each matrix is: 

 For DG: 

 For CG: 
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•  Integral Form: 

•  Matrix Form: 

•  Where each matrix is: 

 For DG: 

 For CG: 
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•  Integral Form: 

•  Matrix Form: 

•  Where each matrix is: 

 For DG: 

 For CG: 

Spatial Discretization 
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Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
3.  What should we aim for in our new models 

•  E.g., Conservation, Scalability, High-order Accuracy, Adaptivity 
4.  Where we plan to head with our GFD models 



What Should We Aim For? 

1.  Conservation – Conservation of Mass and Energy are absolute musts; 
what else should we conserve?  

2.  Scalability – New models must be highly scalable because we will 
continue to get more processors 

3.  High-Order Accuracy – Accuracy is important, of course, but how do we 
measure this and what order accuracy is sufficient? This question is 
coupled to the accuracy of the physics, data assimilation, etc. From the 
standpoint of scalability, high-order is good (hp methods = on-processor 
work is large but the  communication footprint is small). This is also a 
good strategy for exploiting MPI/Open MP Hybrid. 

4.  Adaptivity – Adaptive methods have improved tremendously in the past 
decade and it may offer an opportunity to solve problems not feasible a 
decade ago but we need to identify these applications (e.g., hurricanes, 
storm-surge modeling). 

5.  Coastal Ocean Model – Is a single-layer SW model sufficient? If not, 
how many layers?  



•  Parallelization/Domain Decomposition: Modifying the data structures 
dynamically slows the computations. E.g., the domain decomposition needs to be 
a direct by-product of the adaptive mesh generator. A good first candidate for AM 
is statically adaptive grids where the grid is modified and held fixed for the entire 
simulation. This must work well before moving onto dynamically adaptive grids. 

Some Standing Issues for Adaptive Methods 



Non-hydrostatic Adaptivity Examples 
(Müller, Behrens, Giraldo, Wirth 2010)  

Rising Thermal Bubbles 
Two (Warm/Cold) Thermal Bubbles 



Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
3.  What should we aim for in our new models 
4.  Where we plan to head with our GFD models 

•  Weather and Climate Models 
•  Coastal Ocean Models 
•  Coupled System 



Atmospheric Models:  
Compressible Navier-Stokes with Stratification 
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Example of 3D Grids 

Mesoscale Modeling Mode Global Modeling Mode 
(Cubed-Sphere) 

Global Modeling Mode 
(Icosahedral) 

•  NUMA runs in either Limited-Area or Global Mode. 
•  Currently, any grid can be used including completely 

unstructured grids. 
•  Parallel Domain Decomposition handled by METIS. 



Domain Decomposition via METIS 

1: Decomposition of a 3D 
Cartesian domain using 64 
spectral elements (fourth order).   

2: Decomposition of a “cubed 
sphere” using 96 spectral elements 
(fourth order). 

3: Decomposition of an 
“icosahedral sphere” using 96 
elements (fourth order). 



Limited-Area Mode:  
Linear Hydrostatic Isolated Mountain 

•  Flow of U=20 m/s in an isothermal atmosphere. 
•  LH Mountain: Solid of revolution of Witch of Agnesi: Mountain height = 1 m with  
radius 10 km. 
•  Absorbing (sponge) boundary condition implemented on lateral and top boundaries. 



Limited-Area Mode: 
Linear Hydrostatic Isolated Mountain 

u 



Global Mode:  
Rising Thermal Bubble  

x 

z 



Coastal Ocean Model: 
Shallow Water Equations 
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(Momentum) 

(Geopotential) 
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Convergence Rate for DG Triangles  
(Linear Standing Wave) 

Note that the method achieves the expected convergence rate; i.e., error =O(hN+1) 



Coastal Ocean Model 
(Rossby Soliton Wave in a Channel) 

(8th Order Polynomials) 

Ne=260 Ne=250 



Linear Stommel Problem 
(Grid Dimensions: Np=3721, Ne=200, N=6) 

(Operators Tested: Wind Stress, Coriolis, and Bottom Friction) 

Grid Free Surface Height, U and V 



Linear Stommel Problem 
(Ne=32) 

Semi-Implicit 
3 times faster 
than explicit 
method 



Cosine Wave on a Sloping Beach 
(Grid Dimensions: Np=205, Ne=320, N=1) 

(Operators Tested: Nonlinear Terms and Bathymetry) 

Surface Height 

Grid 

Bathymetry 



Propagation of the 2004 Indian Ocean Tsunami 
(Grid Dimensions: Np=66715, Ne=130444, N=1) 

Time evolution of the water surface height (grid data provided by J. Behrens, AWI,  
and data formatted by D. Alevras, NPS) 

x 

y 



Propagation of the 2004 Indian Ocean Tsunami 
(Comparisons between Obs and Model) 

y 



Propagation of the 2004 Indian Ocean Tsunami 
(Comparisons between Obs and Model) 



A Multitude of Challenges Remain 

•  Discontinuous Galerkin method is a great choice for both atmospheric and ocean models. 
•  Using (high-order) triangular elements allows for straightforward use of adaptive 

unstructured grids for complex geometries (e.g., coastlines, etc.). 
•  The atmospheric model is quite mature:  

–  3D and MPI  
•  The coastal ocean model needs additional work:  

–  only 2D and serial – need to consider 3D and MPI. 
–  Wetting and drying algorithms work for N=1 but are implementing new methods that 

preserve well-balanced and positivity (for wetting and drying). 
•  Coupling the models is possible especially if triangular prisms are used.  

–  This is feasible in the context of a coupled atmosphere-ocean model especially for 
limited area only and with statically adaptive grids. 

–  The disparate time-scales between the atmosphere-ocean can be handled using 
extrapolation (multi-rate) methods. 

–  We have (unanswered) questions about whether we need to go to multi-layer shallow 
water equations or is the 2D SWE sufficient?  What about going to full INSE? Is this 
overkill? 

–  Future projects include adding wave models (perhaps SWAN is a good choice as in 
Joannes’ talk) 


