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Model problem

Lets consider the system

wt + F(w)x + B(w) · wx = S(w)Hx, (1)

where
w(x, t) takes values on an open convex set O ⊂ RN ,
F is a regular function from O to RN ,
B is a regular matrix function from O toMN×N(R),
S is a function from O to RN , and
H is a function from R to R.

By adding to (1) the equation Ht = 0, the system (1) can be rewritten under the form

Wt +A(W) ·Wx = 0, (2)

where
W is the augmented vector

W =

»
w
H

–
∈ Ω = O × R ⊂ RN+1

and
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Lets consider the system

wt + F(w)x + B(w) · wx = S(w)Hx, (1)

where
w(x, t) takes values on an open convex set O ⊂ RN ,
F is a regular function from O to RN ,
B is a regular matrix function from O toMN×N(R),
S is a function from O to RN , and
H is a function from R to R.

By adding to (1) the equation Ht = 0, the system (1) can be rewritten under the form

Wt +A(W) ·Wx = 0, (2)

where
A(W) is the matrix whose block structure is given by:

A(W) =

»
A(w) −S(w)

0 0

–
,

where
A(w) = J(w) + B(w), being J(w) =

∂F
∂w

(w).
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Difficulties

Main difficulties

Non conservative products A(W) ·Wx. Solutions may develop discontinuities
and the concept of weak solution in the sense of distributions cannot be used.
The theory introduced by DLM 1995 is used here to define the weak solutions
of the system. This theory allows one to give a sense to the non conservative
terms of the system as Borel measures provided a prescribed family of paths in
the space of states.

Derivation of numerical schemes for non-conservative systems:
Path-conservative numerical schemes (Parés 2006).

The eigenstructure of systems like two-layer Shallow-Water system or
two-phase flow model of Pitman Le are not explicitly known: PVM methods.
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Path-conservative schemes

We consider here path-conservative numerical schemes in the sense defined in Parés
2006, that is, numerical schemes of the general form:

Wn+1
i = Wn

i −
∆t
∆x
`
D+

i−1/2 +D−i+1/2

´
, (3)

where:

∆x and ∆t are, for simplicity, assumed to be constant;

Wn
i is the approximation provided by the numerical scheme of the cell

average of the exact solution at the i-th cell, Ii = [xi−1/2, xi+1/2] at the
n-th time level tn = n∆t, and

D±i+1/2 = D±
`
Wn

i ,W
n
i+1
´
,

where D− and D+ are two Lipschitz continuous functions from Ω×Ω to
Ω satisfying:

D±(W,W) = 0, ∀W ∈ Ω, (4)

and

for every WL,WR ∈ Ω,

D−(WL,WR) +D+(WL,WR) =

Z 1

0
A
`
Φ(s; WL,WR)

´∂Φ

∂s
(s; WL,WR) ds,

being Φ a family of Lipschitz continuous paths defined in
[0, 1]× Ω× Ω→ Ω and satisfying some regularity conditions, in
particular

Φ(0; WL,WR) = WL, Φ(1; WL,WR) = WR, Φ(s; W,W) = W.

Here, the family of straight segments is considered:

Φ(s; WL,WR) = WL + s(WR −WL).
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Path-conservative schemes

We consider here path-conservative numerical schemes in the sense defined in Parés
2006, that is, numerical schemes of the general form:

Wn+1
i = Wn

i −
∆t
∆x
`
D+

i−1/2 +D−i+1/2

´
, (3)

Convergence

In Castro, LeFloch, Muñoz and Parés, 2008 and Parés-Muñoz, 2009 has
been proved that the numerical solutions provided by finite
difference/volumes path-conservative numerical scheme converge to
functions which solve a perturbed system in which an error source-term
appear on the right hand side (which is a measure supported on the
discontinuities). This problem is common to any numerical scheme that
introduces numerical diffusion.

In Muñoz-Parés, 2010 is shown that in certain situations this error
vanishes for finite difference/volumes methods: this is the case of systems
of balance laws.
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Roe linearization I

PVM numerical schemes are defined using a generalized Roe matrix for (2) as
defined by Toumi 1992:
Given a family of paths Φ = [Φw,ΦH]T , a function
AΦ : Ω× Ω 7→ M(N+1)×(N+1)(R) is called a Roe linearization if it verifies the
following properties:

• for any WL,WR ∈ Ω, AΦ(WL,WR) has N + 1 distinct real eigenvalues,

• for every W ∈ Ω,
AΦ(W,W) = A(W); (4)

• for any WL,WR ∈ Ω,

AΦ(WL,WR) · (WR −WL) =

Z 1

0
A(Φ(s; WL,WR))

∂Φ

∂s
(s; WL,WR) ds. (5)
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Roe-based schemes I

The following Roe linearizations AΦ(WL,WR) for system (1) are considered
(Parés-Castro 2004):

AΦ(WL,WR) =

»
AΦ(wL,wR) −SΦ(wL,wR)

0 0

–
,

where
AΦ(wL,wR) = J(wL,wR) + BΦ(wL,wR).

Here, J(wL,wR) is a Roe matrix of the Jacobian of the flux F in the usual sense:

J(wL,wR) · (wR − wL) = F(wR)− F(wL);

BΦ(wL,wR) · (wR − wL) =

Z 1

0
B(Φw(s; WL,WR))

∂Φw

∂s
(s; WL,WR) ds;

SΦ(wL,wR)(HR − HL) =

Z 1

0
S(Φw(s; WL,WR))

∂ΦH

∂s
(s; WL,WR) ds.

It can be easily shown that, the resulting matrix is a Roe linearization provided it has
N + 1 different real eigenvalues.
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Roe-based schemes II

Once the Roe linearization has been chosen, a numerical scheme can be defined by

Wn+1
i = Wi −

∆t
∆x
`
D+

i−1/2 +D−i+1/2

´
,

where
D±i+1/2 = bA±Φ(Wn

i ,W
n
i+1) · (Wn

i+1 −Wn
i ),

being
AΦ(WL,WR) = bA+

Φ(WL,WR) + bA−Φ(WL,WR)

is any decomposition of the Roe linearization of the form:

bA±Φ(WL,WR) =
1
2

(AΦ(WL,WR)±QΦ(WL,WR)) ,

whereQΦ(WL,WR) can be interpreted as a numerical viscosity matrix.
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Roe-based schemes III

The numerical scheme in the unknowns w can be written as follows:

wn+1
i = wn

i −
∆t
∆x
`
D+

i−1/2 + D−i+1/2

´
, (6)

being

D±i+1/2 =
1
2
`
F(wi+1)− F(wi) + Bi+1/2(wi+1 − wi)− Si+1/2(Hi+1 − Hi)

± Qi+1/2(wi+1 − wi − A−1
i+1/2Si+1/2(Hi+1 − Hi))

”
,

(7)

being

Bi+1/2 = BΦ(Wi,Wi+1),

Si+1/2 = SΦ(Wi,Wi+1),

Ai+1/2 = AΦ(Wi,Wi+1) and

Qi+1/2 = QΦ(Wi,Wi+1) a numerical viscosity matrix obtained from
QΦ(Wi,Wi+1)

Different numerical schemes can be obtained for different definitions of Qi+1/2
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Roe-based schemes IV

Roe scheme corresponds to the choice

QΦ(WL,WR) = |AΦ(WL,WR)|,

Lax-Friedrichs scheme:

QΦ(WL,WR) =
∆x
∆t

Id,

being Id the identity matrix.

Lax-Wendroff scheme:

QΦ(WL,WR) =
∆t
∆x

A2
Φ(WL,WR),

FORCE and GFORCE schemes are presented in the bibliography as a convex
combination of Lax-Friedrichs and Lax-Wendroff scheme:

QΦ(WL,WR) = (1− ω)
∆x
∆t

Id + ω
∆t
∆x

A2
Φ(WL,WR),

with ω = 0.5 and ω = 1
1+α , respectively, being α the CFL parameter.
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PVM methods I

We propose a class of finite volume methods defined by

Qi+1/2 = Pl(Ai+1/2),

being Pl(x) a polinomial of degree l,

Pl(x) =

lX
j=0

αj xj,

and Ai+1/2 = AΦ(wi,wi+1) a Roe matrix. That is, Qi+1/2 can be seen as a
Polynomial Viscosity Matrix (PVM).

See also: P. Degond, P.F. Peyrard, G. Russo, Ph. Villedieu. Polynomial upwind schemes for
hyperbolic systems. C. R. Acad. Sci. Paris 1 328, 479-483, 1999.
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PVM methods I

We propose a class of finite volume methods defined by

Qi+1/2 = Pl(Ai+1/2),

being Pl(x) a polinomial of degree l,

Pl(x) =

lX
j=0

αj xj,

and Ai+1/2 = AΦ(wi,wi+1) a Roe matrix. That is, Qi+1/2 can be seen as a
Polynomial Viscosity Matrix (PVM).

Qi+1/2 has the same eigenvectors than Ai+1/2 and if λi+1/2 is an eigenvalue of
Ai+1/2, then Pl(λi+1/2) is an eigenvalue of Qi+1/2
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PVM methods II

If
α

∆x
∆t
≥ Pl(λi+1/2) ≥ |λi+1/2|, α ∈ (0, 1), i = 1, · · · ,N,

then the numerical scheme is linearly L∞-stable. Therefore, a sufficient
condition to ensure that the numerical scheme is linearly L∞-stable is that

α
∆x
∆t
≥ Pl(x) ≥ |x| ∀x ∈ [λ1,i+1/2, λN,i+1/2]. (8)

Let us consider the following notation: PVM-l(S0, · · · , Sk).
In practice, the parameters S0, · · · , Sk will be related to the approximations of some
wave speeds.

Upwind methods

A PVM method is said to be upwind if

Pl(AΦ) =


AΦ if λ1 > 0
−AΦ if λN < 0,

and it will be denoted as PVM-lU.



Introduction PVM methods Applications Conclusions

PVM-(N-1)U(λ1, · · · , λN) or Roe method

PN−1(λj) = |λj|, j = 1, · · · ,N.

QΦ(wL,wR) = |AΦ(wL,wR)| =
N−1X
j=0

αjAj
Φ(wL,wR),

where αj, j = 0, · · · ,N − 1 are the solution of the following linear system:

0BBB@
1 λ1 . . . λN−1

1
1 λ2 . . . λN−1

2
...

...
. . .

...
1 λN . . . λN−1

N

1CCCA
0BBB@

α0

α1

...
αN−1

1CCCA =

0BBB@
|λ1|
|λ2|

...
|λN |

1CCCA ,

λ1, · · · , λN are the eigenvalues of the matrix AΦ(wL,wR).



Introduction PVM methods Applications Conclusions

PVM-0(S0) methods: Rusanov, Lax-Friedrichs and modified Lax-Friedrichs
schemes

P0(x) = S0,

S0 ∈ {SRus, SLF, Smod
LF }, SRus = max

j
|λj,i+1/2|, SLF =

∆x
∆t

and Smod
LF = α

∆x
∆t

.

Rusanov scheme corresponds to the choice S0 = SRus,

Lax-Friedrichs with S0 = SLF

modified Lax-Friedrichs with S0 = Smod
LF .

λ1 λ2 λj
...

λN S

 
PVM−0(S)
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PVM-1U(SL, SR) or HLL method

P1(x) = α0 + α1 x such as P1(SL) = |SL|, P1(SR) = |SR|,

where SL (respectively SR) is an approximation of the minimum (respectively maximum)
wave speed.

SL λ1 λ2 λj
...

λN SR

 

PVM−1U(SL,SR)
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PVM-1U(SL, SR) or HLL method

Remarks

The usual HLL scheme coincides with PVM-1U(SL, SR) in the case of
conservative systems.

Let us suppose that the system is conservative. Then, the conservative flux associated
to PVM-1U(SL,SR) is φi+1/2 = D−i+1/2 + F(wi). Taking into account that

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

,

then

φi+1/2 =
F(wi)(SR + |SR| − SL − |SL|) + F(wi+1)(SR − |SR| − SL + |SL|)

2SR − 2SL

− (SR|SL| − SL|SR|)(wi+1 − wi)

2SR − 2SL

=
S+

R F(wi)− S−L F(wi+1) + (S+
R S−L )(wi+1 − wi)

S+
R − S−L

which is a compact definition of the HLL flux, being S+
R = max(SR, 0) and

S−L = min(SL, 0).



Introduction PVM methods Applications Conclusions

PVM-2(S0) methods or FORCE type methods

P2(x) = α0 + α2x2, such as P2(S0) = S0, P′2(S0) = 1, S0 ∈ {SRus, SLF, Smod
LF }.

Remarks
If S0 = SLF then we obtain FORCE method.

GFORCE scheme can be obtained by imposing

P2(Smod
LF ) = Smod

LF , P′2(Smod
LF ) =

2α
1 + α

,

λ1 λ2 λj
...

λN S0

 

PVM−2(S0)
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PVM-2U(SM, Sm) method

P2(x) = α0 + α1x + α2x2,

such as
P2(Sm) = |Sm|, P2(SM) = |SM|, P′2(SM) = sgn(SM),

where

SM =


λ1,i+1/2 if |λ1,i+1/2| ≥ |λN,i+1/2|,
λN,i+1/2 if |λ1,i+1/2| < |λN,i+1/2|.

Sm =


λN,i+1/2 if |λ1,i+1/2| ≥ |λN,i+1/2|,
λ1,i+1/2 if |λ1,i+1/2| < |λN,i+1/2|.

SL λ1 λ2 λj
...

λN SR

 

PVM−2U(SL,SR)
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PVM-2U(SL, SR, Sint) method or CFP method

P2(x) = α0 + α1x + α2x2,0@ 1 SL S2
L

1 SR S2
R

1 Sint S2
int

1A0@ α0

α1

α2

1A =

0@ |SL|
|SR|
|Sint|

1A ,

SL (respectively SR) is an approximation of the minimum (respectively maximum)
wave speed and

Sint = Sext max(|λ2,i+1/2|, . . . , |λN−1,i+1/2|),

Sext =


sgn(SL + SR), if (SL + SR) 6= 0,
1, otherwise.
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PVM-2U(SL, SR, Sint) method or CFP method

!1 !N
"int... ...
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PVM-4(SM, SI) and PVM-4(S0) methods

P4(x) = α0 + α2x2 + α4x4,

P4(SM) = |SM|, P4(SI) = SI , P′4(SI) = 1,

SI =

8<: max
2≤j≤N

(|λj,i+1/2|) if |λ1,i+1/2| ≥ |λN,i+1/2|,

max
1≤j≤(N−1)

(|λj,i+1/2|) if |λ1,i+1/2| < |λN,i+1/2|.

S1 = λ1 λ2 λj
...

S2 = λN

 

PVM−4(S1,S2)
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PVM-4(SM, SI) and PVM-4(S0) methods

P4(x) = α0 + α2x2 + α4x4,

P4(SM) = |SM|, P4(SI) = SI , P′4(SI) = 1,

PVM-4(S0): SI = SM = S0.

λ1 λ2 λj
...

λN S

 

PVM−4(S)
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Extension to high order and/or higher dimensions

Extension to high order and/or higher dimensions

M. Castro, J.M. Gallardo and C. Parés.
High order finite volume schemes based on reconstruction of states for solving
hyperbolic systems with nonconservative products. Applications to shallow
water systems. Math. Comp. 75: 1103-1134, 2006.

M. Castro, J.M. Gallardo, J.A. López and C. Parés.
Well-balanced high order extensions of Godunov’s method for semilinear
balance laws. SIAM J. Num. Anal., 46(2): 1012-1039, 2008.

M. Castro, E.D. Fernández, A. Ferreiro, J.A. Garcı́a and C. Parés.
High order extensions of Roe schemes for two dimensional nonconservative
hyperbolic systems. J. Sci. Comput., 39: 67-114, 2009.
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High performance implementation

CPU implementation

M. Castro, J.A. Garcı́a, J.M. González and C. Parés.
A parallel 2d finite volume scheme for solving systems of balance laws with
nonconservative products: application to shallow flows. Comp. Meth. Appl.
Mech. Eng. 196, 2788-2815, 2006.

M. Castro, J.A. Garcı́a, J.M. González and C. Parés.
Solving shallow-water systems in 2D domains using finite volume methods and
multimedia SSE instructions. J. Comput. App. Math., 221: 16-32, 2008.

GPU implementation

M. Lastra, J. M. Mantas, C. Ureña, M. J. Castro, J. A. Garcı́a-Rodrı́guez.
Simulation of shallow-water systems using graphics processing units. Math.
Comput. Simul. 80, 598618, 2009.

M. de la Asunción, J. M. Mantas, M. J. Castro.
Simulation of one-layer shallow water systems on multicore and CUDA
architectures. J. Supercomput., 2009, (DOI: 10.1007/s11227-010-0406-2).
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Two-fluid flow model of Pitman and Le

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

∂hf

∂t
+
∂qf

∂x
= 0,

∂qf

∂t
+
∂

∂x

 
q2

f

hf
+

g
2

h2
f

!
+ ghf

∂hs

∂x
= −ghf

db
dx
,

∂hs

∂t
+
∂qs

∂x
= 0,

∂qs

∂t
+
∂

∂x

„
q2

s

hs
+

g
2

h2
s + g

1− r
2

hshf

«
+ rghs

∂hf

∂x
= −ghs

db
dx
.

index s (f respectively) makes reference to the solid (fluid respectively) phase.
b(x) represents the fixed bottom topography,
r is the ratio of densities between the solid and fluid phase.
The unknowns hs and hf are related to the total height of the granular fluid h and
the solid fraction ψ by

hs = ψh, and hf = (1− ψ)h.

The unknowns qs and qf represent the mass-flow of each phase and are related
with the velocities of each phase by qs = ushs and qf = uf hf .
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Numerical example

Let us consider a rectangular channel in the domain [−0.9, 1.0] with topography

b(x) =


0.25(cos(π(x− 0.5)/0.1) + 1) if |x− 0.5| < 0.1,
0 otherwise.

As initial condition we set us(x, 0) = uf (x, 0) = 0 and

h(x, 0) =


1 + 10−3 if −0.6 < x < −0.5
1− b(x) otherwise,

ψ(x, 0) =


0.6− 10−3 if −0.6 < x < −0.5
0.6 otherwise.

Free boundary conditions are set,

T = 1.25,

∆x = 0.01,

CFL=0.9,

first order aproximation of the eigenvalues are used,

a reference solution computed with Roe scheme for ∆x = 1/3200.
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Free surface η = h + b.
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Free surface η = h + b.
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Solid volume fraction ψ.
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Solid volume fraction ψ.
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Phase velocity uf .
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(g) PVM-0,2,4(S0)
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Phase velocity uf .
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Phase velocity us.
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(j) PVM-0,2,4(S0)
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Phase velocity us.
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Tidal forcing at the Strait of Gibraltar
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Lock-Exchange Experiment

The final stationary state represents the secular exchange.

Maximal flow independent of the computational domain (approx. 0.85 Sv.)
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Lock-Exchange Experiment II

Click here for lock-exchange experiment
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Tidal Experiment

The model is forced at the open boundaries with boundary conditions that simulate
the four main tidal components to be considered (M2, S2, O1 and K1):

h1(xB, t) + h2(xB, t) = h̄B +
4X

n=1

Zn(xB)cos(αnt − φn(xB)).

xB represents a point of the open boundaries;

Zn(xB) and φn(xB) are the prescribed surface elevation amplitudes and phases of
the n-th tidal constituent at the boundary sections;

αn its frequency;

h̄B the total depth of the water column corresponding to the steady state solution
at this boundary.

Tidal data from FES2004 (Lyard F., Lefevre F., Letellier T., Francis O., 2006,
Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics).
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Tidal Experiment Animations I

Click here for tidal experiment
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Tidal Experiment Animations II

Click here for a zoom
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Tidal Experiment Animations III

Click here for first layer velocity field
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Subinertial signals at Camarinal sill
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An aerial photograph of the zone
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2D Two-layer Savage-Hutter shallow-water model

E. Fernández Nieto, F. Bouchut, D. Bresch, M.J. Castro, A. Mangeney.
A new Savage-Hutter type model for submarine avalanches and generated
tsunami. J. Comp. Phys., 227: 7720-7754, 2008.

F. Bouchut, M. Westdickenberg.
Gravity driven shallow water models for arbitrary topography. Comm. in Math.
Sci. 2: 359-389, 2004
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Tsunamis generated by submarine landslides

Click here for a zoom
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Conclusions

Conclusions

PVM methods are defined in terms of viscosity matrices computed by a suitable
evaluation of Roe matrices.

They only need some information about the eigenvalues of the system to be
defined, and no spectral decomposition of Roe matrices is needed.

They are faster than Roe method.

They include upwind and centered schemes such as: Lax-Friedrichs, Rusanov,
HLL, FORCE or GFORCE method.

Some new solvers are also proposed.

Their extension to high order or/and 2D problems is straight forward.

Application to real problems have been performed
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