Development of a Coastal Inundation Model

using a Triangular Discontinuous Galerkin
Method

Shivasubramanian Gopalakrishnan
Francis X. Giraldo

Department of Applied Mathematics
Naval Postgraduate School, Monterey, California

21st October 2010

Thursday, October 21, 2010



Motivation
Numerical modeling of storm surges and tsunamis
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Outline
@ Discontinuous Galerkin Method applied to SWE

@ Coastal Ocean Modeling
@ Adaptive Mesh Refinement

Thursday, October 21, 2010



Shallow Water Equations

%+V-F(q)=5(q),where q=(¢,U)"

0= (use iy )

5(q) = ’ )
D=7\ Flhx U) = 6Vp — 3 +9U
where,
¢ — 8 (hs + hb)
U= ou
hs— free surface height, hy— bathymetry
g— gravitational acceleration

f=fy+ B(y — ym)— Coriolis parameter
T— wind stress, v— bottom friction
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Discontinuous Galerkin Method
The domain €2 is decomposed into N, conforming elements.

Ne
Q=]
e=1
For the operators, a non—singular mapping
x =WV (£)

transforms the physical coordinate system X = (x,y)" to local
reference coordinate system & = (&, 77)T.
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Discontinuous Galerkin Method
The local elementwise solution is approximated by Nth order

polynomial in & by

M,
an (€) =D i (&) an (&)
=1

where M, = 2 (N 4 1) (N + 2) is the number of interpolation
points and 1; (£) the associated Lagrange polynomials.
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Triangular basis functions

a) b) 1y c) s

Triangular basis functions of order N=1 at 3 interpolation points.
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Triangular basis functions

d) ¥y e) s f) v

Triangular basis functions of order N=2 at 6 interpolation points.
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riangular basis functions

1) J) Y10

Triangular basis functions of order N=3 at 10 interpolation points.
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Discontinuous Galerkin Method
Applying DG to the Shallow water equations to obtain the weak

form

Ot

3
— = Z/ Vi (x) ntel . F,S,*’/)dx
=1 7 Te

Integrating the above equation by parts,

O (e) . .
/ ( il F,ﬁ,)-vs,(\,))zp,-(x)dx
(2

W (x)( i vrﬁﬁsﬁﬁ) dx

3
_ Z/ wi (X) n(e,l) . (Flsle) o F/&*J)) dx
=1 “Te
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Discontinuous Galerkin Method

e = -
Left Right

o @ 0

e = e

Rusanov Numerical Flux

F/(v*’/) _ % [FN (ﬁ)) - (q/(v')) N0 (q/(v') B q/(ve)) n(e,/)}
Where,
A = max (\U(e)| + W UV + M)
with,

yled) — led) . ()
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Matrix form of semi—discrete equations
Using the polynomial approximation gy = Zf‘i"i Wi q;

6‘q(e)
/ pigjdx 8Jt l/wiv%dx'/:j(e)—/ ¢i¢jdx5j(e)
Qe Qe Qe

3
_ ; /r | it - (F(E) — FD)

J

Defining element matrices as

M) = / vijdx, My = wwj n(&Ndx, DI = /Q Wi Vi dx
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Matrix form of semi—discrete equations
Eliminating mass matrix on LHS

Ale) _ (M(e))‘l Do), fyled) — (M(e))‘l e

J

(e) A 3
B (00 == S (6 (- )
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Inundation Modeling




Coastal ocean modeling

@ The shoreline is represented as a moving boundary condition
where ¢ = ¢s + ¢p =0
o Moving front is described as x = xp + [ vpdt.

@ Where xp is initial position and v the velocity of the front.

@ Approaches used to model the wetting and drying of land.

o Fixed grid methods. — Easier to implement. Additional
algorithms required to maintain depth positivity.

e Moving grid methods. — traditionally perceived as
cumbersome. (Lynch and Gray 1978)
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Wetting and Drying Algorithm
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Wetting and Drying Algorithm — based on Gourgue et al 2009
Conservation of Mass

D
Ot

where ¢ = ¢s + ¢p, and operator F (U) = F (¢s, U)
@ Step 1 — limit ¢ to a threshold value.

~ ~F(U)

¢§ — Mmax (¢'57, chreshold — be)

@ Step 2
Ast — _F(¢57 ZI)
@ Step 3 — ensure free surface does not move to dry areas.
¢n—|—1 ) _
> = —F (¢57 U)

At
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Wetting and Drying Algorithm — based on Gourgue et al 2009

Conservation of Mass in matrix form

8¢7*(e) (D(e)) /:J(e) 4 23: (Mis_ea/)) r (F(e) _ F(*J))
/=1

Ot

J
Let,
S (¥ - A\ (e)
F: (¢, 0) = — (Dij ) FJ.

3

Fr(05.) = > (W°7) " (FO - Fen)

=1 J
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Wetting and Drying Algorithm — based on Gourgue et al 2009

¢g+1
At

— ch* (¢57 U) + Fjs>l< (¢57 U)
Where,

0 If F(J; <0& ¢n < chresho/d
F. otherwise

FjC*:{

0 if there is a node i € Qe with FL < 0 & ¢ < Heprechold

Fs+ — [ V!
J { F! otherwise

*limited to using linear elements.
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Steady state test

Is the model well balanced ?
Bottom topography is defined as,

hp(x) = max (0,0.25 — 5 (x — 0.5%)) ,0 < x eq 1

Initial condition

hs + hp, = max (0.2, b)

oU = 0 over entire domain
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Steady state test case

DG:Diss=1,Ne=100,N=1, Q=2 Time =1
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Balzano [1998] Test Case 1

Bottom topography is defined as,

X

") = 5760

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

21t
s — 2si
@5 = g x (2sin (43200>)
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Balzano [1998] Test Case 1

— Bathymetry
— Ebbing Tide
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Balzano [1998] Test Case 2

Bottom topography is defined as,

s if x < 3600m, or if x > 6000m
ho(x) = § 23 if 3600m < x < 4800m
55 — 25 iT 4800m < x < 6000m

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

21t
s — 2si
@5 = g * (2sin (43200>)
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Balzano [1998] Test Case 2

— Bathymetry
— Ebbing Tide
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DG:Diss=1,Ne=100,N =1, Q =2, Time = 1200

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000
X

Thursday, October 21, 2010



Balzano [1998] Test Case 3

Bottom topography is defined as,

s if x < 3600m, or if x > 6000m
hp(x) = 5785 + 53 if 3600m < x < 4800m
55 — 25 iT 4800m < x < 6000m

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

21t
s — 2si
@5 = g * (2sin (43200))
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Balzano [1998] Test Case 3

— Bathymetry
— Ebbing Tide
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Balzano [1998] 2D Test Case 1
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Balzano [1998]| 2D Test Case 2
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Balzano [1998] Test Case 3
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Adaptive Mesh Refinement




Adaptive Mesh Refinement

Edge collapse
Edge bisection 2 P
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2D Unstructured AMR — S. Menon (In Progress)

lengthScale
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0.05925 0.76837
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3D Unstructured AMR — Gopalakrishnan, Quan and Schmidt
[2006]
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Distributed — Memory Machines

® Each node in the computer has a locally addressable memory space

® The computers are connected together via some high-speed network

Pros

Cons

— Infiniband, Myrinet, Giganet, etc..

Really large machines

Size limited only by gross physical
considerations:

* Room size
* Cable lengths (10’s of meters)
* Power/cooling capacity
*  Money!
Cheaper to build and run

Harder to program
Data Locality

NETWORK HUB
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Shared-Memory Processing

Each processor can access the entire data space

— Pro’s
e Easier to program
* Amenable to automatic parallelism
* Can be used to run large memory serial programs
— Con’s
* Expensive
 Difficult to implement on the hardware level
* Processor count limited by contention/coherency (currently around 512)
* Watch out for “NU” part of “NUMA”

= = 1

BUS ORCROSSBAR

MEMORY

7 &
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Parallel AMR

CPU boundary
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Conclusions and Future Directions

@ DG provides a robust framework to implement SWE.

@ Use of triangular DG method enables the modeling of complex
coastlines.

@ Adaptive mesh refinement helps in providing adequate
resolution to resolve interesting features.

@ Higher order Wetting and Drying Methods.

@ Wind forcing data from mesoscale atmospheric codes -
NUMA.

@ Moving mesh technique may provide a useful alternative to
model inundation as a moving boundary.

@ Collaboration with Randy LeVeque and Kyle Mandli.
Comparison and verification of test cases.
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