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Motivation

e Saint-Venant System of shallow water equations
describes the fluid flow as a conservation law with
an additional source term

e The general characteristic of shallow water flows
i1s that vertical scales of motion are much smaller
than the horizontal scales

e The shallow water equations are derived from the
incompressible Navier-Stokes



Motivation

e This Saint-Venant System is widely used in many
scientific and engineering applications related to

e Modeling of water flows in rivers, lakes and coastal
areas

e The Development of robust and accurate numer-
ical methods for Shallow Water Equations is an
important and challenging problem




2-D Saint-Venant system of shallow water

equations

( hy + (hu), + (hv), = 0,

1
(hu)s + (hu2 + §gh2) + (huv), = —ghB,, (1)

1
(hv)s + (huv), + (th + §gh2) = —ghB,,

Y

_/\

\
e the function B(x,y) represents the bottom elevation

e h is the Hluid depth above the bottom
e (u,v)! is the velocity vector

e g is the gravitational constant
One of the difficulties encountered:

e that system (1) admits nonsmooth solutions:
shocks, rarefaction waves,

e the bottom topography function B can be discon-
tinuous.



2-D Saint-Venant system of shallow water

equations

A good numerical method for Saint-Venant System should
have at least two major properties, which are crucial for its
stability:

(i) The method should be well-balanced, that is, it

should exactly preserve the stationary steady-state
solutions h+ B = const, u = v = 0 (lake at rest
states).
This property diminishes the appearance of un-
physical waves of magnitude proportional to
the grid size (the so-called “numerical storm”),
which are normally present when computing quasi
steady-states;

(ii) The method should be positivity preserving, that
is, the water depth / should be nonnegative at all
times.

This property ensures a robust performance of the
method on dry (A = 0) and almost dry (h ~ 0)

states.



Semi-discrete centralupwind scheme

Central-Upwind schemes were developed for multidimensional
hyperbolic systems of conservation laws in 2000 — 2007 by
Kurganov, Lin, Noelle, Petrova, Tadmor, ...

e Central-Upwind schemes are (Godunov-type finite-
volume projection-evolution methods:

e At each time level a solution is globally approxi-
mated by a piecewise polynomial function,

® Which is then evolved to the new time level using
the integral form of the conservation law system.



Key ideas of the scheme development for

Saint-Venant system

e Change of conservative variables from (h, hu, hv)! to
(w:= h+ B, hu, hv)!

e Replacement of the bottom topography function B
with its continuous piecewise linear (or bilinear in
the 2-D case) approximation

e Special positivity preserving correction of the
piecewise linear reconstruction for the water sur-
face w

e Development of a special finite-volume-type
quadrature for the discretization of the cell aver-
ages of the geometric source term.



Description of the scheme

e We describe now, our new second-order semi-
discrete central-upwind scheme for solving the
Saint- Venant system of shallow water equations on
triangular grids

e We first denote the water surface by w := h+ B and

rewrite the original Saint-Venant system in terms
of the vector U := (w, hu, hv)?:

U;+ F(U, B), + G(U, B)y = S(U, B)
where the luxes and the source terms are:

00 (B Ly D

(hu)(hv) (hv)?* 1

T
L o2
G(U,B) = (hv, w—B’w—BIQQ(w B))

S(U, B) = (o, _g(w — B)B,, —g(w — B)By)T.




Description of the scheme: notations

(%12Yj12)

e Triangulation 7 = UT] of the computational do-

J
main: triangular cells 7 of size |T|

® 7l ;= (cos(0;x),sin(f,;)) are the outer unit normals to
the corresponding sides of 7 of length /., k = 1,2, 3,

® (r,,y;) are the coordinates of the center of mass for
T; and M, = (v, y;x) is the midpoint of the k-th
side of the triangle 7, £ =1,2,3

e 7, Tj» and 1;3 are the neighboring triangles that
share a common side with 7}



Description of the centralupwind scheme on

triangular grids

Denote U;(t) ~ ﬁ [ U(x,y,t)dzdy.

1}

Second order central-upwind scheme on triangular
grid for the Saint-Venant System:

k=1
3 :
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Description of the centralupwind scheme on

triangular grids

e U;(M;;) and Uj,(M;;) are the corresponding values
at M, of the plecewise linear reconstruction

~

U(z,y) = U +(Up)jlz —zj) +(Uy)(y —yy), (2,y) €T
of U at time ¢

e The quantity §]~ in the scheme is an appropriate dis-
cretization of the cell averages of the source term

e The directional local speeds a] ;. and a?,ﬁt are defined

by
ajy (Mjr) = — min{ Ai[Vir(U;(Mj))], M [Vie(Uji(M;)], 0},
agi (M) = max{As[Ve(U;(Mjp))], As[Vie (U (Mjg)], 0,

where \; V] < Ao [Vji] < )\3 [ij] are the eigenvalues

of the matrix Vj;, = cos(é’jk) + sin(6); k)gg

e A fully discrete scheme is obtained by using a sta-
ble ODE solver of an appropriate order



Calculation of the numerical derivatives of the ith

component of U

e Construct three linear interpolations L;*(z,y),
L7(xz,y) and Lj’(z,y): conservative on T and two

of the nelghbormg triangles (7)1, 7}2), (TjQ,Tjg) and
(L1, Tjs)

e Select the linear piece with the smallest magnitude
of the gradient, say, L’?m(x y), and set

(U, (UP))" = VL™

X Y

e Minimize the oscillations by checking the appear-
ance of local extrema at the points M, 1,2,3



Piecewise linear approximation of the bottom

e Replace the bottom topography function B with
its continuous piecewise linear approximation B,
which over each cell 7T; is given by the formula:

—~

T — Ty, Y — Yjiy B(:I:, y) — Bj12
'fj23 T jJ'12 ?2723 o :&Jiz Bj23 T Bj12 =0, <w’ y) = TJ

Lijis = Ljo Yjis = Yjpo Bj13 o Bjm

e B, are the values of B at the vertices (Zj,.,Yj.)y K=
12,23,13, of the cell T;

o B, = s(maxe,,2_limy0B(Z;, + hE g, + €n) +
mings 2y limy, 0 B(Zj, + h&, ;. +£n)),

e If the function B is continuous at (z;.,9;.): B, =
B<§jj/€7 g]m)



Positivity preserving reconstruction for w

The idea of the algorithm that guarantees positivity of
the reconstructed values of the water depth h;(M;;) =
w;(Mx) — Bjx, k=1,2,3, for all j:

@ The reconstruction w should be corrected only in

those triangles, where w(z,,,y,.) < B;. for some k,
k= 12,2313

e Since w; > Bj, it is impossible to have w(z, 7, ) <
B; for all three values of «: at all three vertices of
the triangle T;

e T'wo cases in which a correction is needed are pos-
sible:
either there are two indices x; and ko, for which
w(ajjﬁ;l? yjlil) < Bj/il and w(aijQ’ yj/@) < Bj/@’
or there is only one index k1, for which w(z;, ,7;, ) <

B;

R



Well-balanced discretization of the source term

e The well-balanced property of the scheme is guar-
anteed if the discretized cell average of the source
term, S;, exactly balances the numerical fluxes

@ The desired quadrature for the source term that

will preserve stationary steady states (U;.(Mr) =
U, (M) = (C,0,0)", Vj, k) is given by:

Cir(w; (M) — Bji)* cos(0) — g(w,);(w; — B))
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Main theorem: positivity property of the new

scheme

Theorem 1 Consider the Saint- Venant system in the
new variables U = (w, hu, hw)! and the central-upwind
semi-discrete scheme (with well-balanced quadrature
for the source S, positivity preserving reconstruction

for w)

e Assume that the system of ODFEs for the fully
discrete scheme 1s solved by the forward Fuler
method and that for all j, w; — B; > 0 at time
t=1t"

e Then, for all j, E?H — B; > 0 at trme t = =

t" + dt, provided that dt < G%minjjk {ri1}, where a =

maxj,k{a%t,aﬁ} and r;;, k =1,2,3, are the altitudes

of triangle T;

Remark. Theorem 1 1s still valid if one uses a higher-order
SSP ODE solver (either the Runge-Kutta or the multistep
one), because such solvers can be written as a convex com-
bination of several forward Fuler steps.



Accuracy test

The scheme is applied to the Saint-Venant system sub-
ject to the following initial data and the bottom to-

pography:

w(z,y,0) =1, wu(x,y,0)=0.3,
B(z,y) = 0.5exp(—25(x — 1)* — 50(y — 0.5)%).

e For a reference solution, we solve this problem with
our method on a 2 x 400 x 400 triangular grid

e By t = 0.07 the solution converges to the steady
state



® W
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e L!'- and L*-errors and numerical orders of accuracy.

Number of cells| L'-error Order | L®-error Order
2 X 50 x 50 6.59e-04 — 8.02e-03 —
2 x 100 x 100 2.87e-04 1.20 3.59e-03 1.16
2 % 200 x 200 1.00e-04 1.52 1.21e-03 1.57




Small perturbation of a stationary steady-state

solution

e Solve the initial value problem (IVP) proposed by
R.Leveque.

e The computational domain is [0,2] x |0,1] and the
bottom consists of an elliptical shaped hump:

B(z,y) = 0.8 exp(=5(z — 0.9)* — 50(y — 0.5)%).

e Initially, the water is at rest and its surface is flat
everywhere except for 0.05 < z < 0.15:

(14+¢, 0.05 <z <0.15,
1 otherwise,

\ )

w(x,y,0) = < u(x,y,0) =v(x,y,0) =0,

where the perturbation height is ¢ = 10~



Perturbation of a stationary steady-state: well-balanced

scheme (left) and non well-balanced (right)
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Perturbation of a stationary steady-state: well-
balanced scheme (left) and non well-balanced (right)
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Saint-Venant System with friction and

discontinuous bottom

e More realistic shallow water models include addi-
tional friction and/or viscosity terms

e Presence of friction and viscosity terms guarantees
uniqueness of the steady state solution

® We consider the simplest model in which only fric-
tion terms, —x(h)u and —x(h)v, are added to the
rhs of the second and third equations of the Saint-
Venant System

hy + (hu), + (hv), = 0,

1
hu); + ( hu® + =gh*) + (huv), = —ghB, — k(h)u,
2 Y

X

1
(hv); + (huv), + (hv2 + §gh2) = —ghB, — k(h)v.

Y



Saint-Venant System with friction and discontinuous

bottom

e We numerically solve the shallow water model with
friction term on the domain [—0.25,1.75] x [—0.5,0.5]

® We assume that the friction coeflicient is

k(h) = 0.001(1 + 10R) !

e The bottom topography function has a discontinu-
ity along the vertical line z = 1 and it mimics a
mountain river valley




Saint-Venant System with friction and discontinuous

bottom: description of the initial and boundary

conditions

e We implement reflecting (solid wall) boundary con-
ditions at all boundaries

e Our initial data correspond to the situation when
the second of the three dams, initially located at
the vertical lines
r = —0.25 (the left boundary of the computational do-
main), = 0, and x = 1.75 (the right boundary of the
computational domain),
breaks down at time ¢ = 0, and the water propa-
gates into the initially dry area x > 0, and a *“lake at
rest” steady state is achieved after a certain period
of time



e We plot 1-D slices of the numerical solution along
the y = 0 line

e Plots clearly show the dynamics of the fluid flow
as it moves from the region z < 0 into the initially
dry area z > 0 and gradually settles down into a
“lake at rest” steady state
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e This state includes dry areas and therefore its com-
putation requires a method that s both well-balanced
and positivity preserving on the entire computational do-
main



Flow in converging-diverging channel

e The exact geometry of each channel is determined
by its breadth, which is equal to 2y,(z), where

(z) = 0.5 —0.5(1 — d) cos*(m(x — 1.5)), |z — 1.5 < 0.5,
It 0.5, otherwise,

e d = 0.6 1s the minimum channel breadth




Flow in converging-diverging channel

e The initial conditions:
w(z,y,0) = max {1, Bz,y) },  wlz,y,00=2, v(z,y,0)=0.

e The upper and lower y-boundaries are reflecting
(solid wall), the left x-boundary is an inflow bound-
ary with v = 2 and the right z-boundary is a zero-
order outflow boundary

e The bottom topography is given by
B([E’ y) — (6—10(1’—1.9)2_50@—0,2)2 4 6_20(33_2'2)2_50@"‘0-2)2)

)
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Flow in converging-diverging channel: w

Steady-state solution (w) for (d,Bn.) = (0.6,1) on
2 x 200 x 200 (left) and 2 x 400 x 400 (right) grids.
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Conclusions/Difficulties

e We developed a simple central-upwind scheme for
the Saint-Venant system on triangular grids

e We proved that the scheme both preserves station-
ary steady states (lake at rest) and guarantees the
positivity of the computed fluid depth

e It can be applied to models with discontinuous bot-
tom topography and irregular channel widths

e Method is sensitive to the accuracy of the bound-
ary representation

eS. Bryson, Y. Epshteyn, A. Kurganov and
G. Petrova, Well-Balanced Positivity Preserving
Central-Upwind Scheme on Triangular Grids for
the Saint-Venant System, to appear, ESAIM:
M2AN 2010.



