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Motivation

• Saint-Venant System of shallow water equations
describes the fluid flow as a conservation law with
an additional source term

• The general characteristic of shallow water flows
is that vertical scales of motion are much smaller
than the horizontal scales

• The shallow water equations are derived from the
incompressible Navier-Stokes

Motivation



Motivation
• This Saint-Venant System is widely used in many

scientific and engineering applications related to

• Modeling of water flows in rivers, lakes and coastal
areas

• The Development of robust and accurate numer-
ical methods for Shallow Water Equations is an
important and challenging problem

Motivation








ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1

2
gh2

)

x
+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 +

1

2
gh2

)

y
= −ghBy,

(1)

• the function B(x, y) represents the bottom elevation

• h is the fluid depth above the bottom

• (u, v)T is the velocity vector

• g is the gravitational constant

One of the difficulties encountered:

• that system (1) admits nonsmooth solutions:
shocks, rarefaction waves,

• the bottom topography function B can be discon-
tinuous.

Two-Dimensional (2-D) Saint-Venant
System of Shallow Water Equations

2-D Saint-Venant system of shallow water 
equations



2-D Saint-Venant system of shallow water 
equations

A good numerical method for Saint-Venant System should
have at least two major properties, which are crucial for its
stability:

(i) The method should be well-balanced, that is, it
should exactly preserve the stationary steady-state
solutions h + B ≡ const, u ≡ v ≡ 0 (lake at rest
states).
This property diminishes the appearance of un-
physical waves of magnitude proportional to
the grid size (the so-called “numerical storm”),
which are normally present when computing quasi
steady-states;

(ii) The method should be positivity preserving, that
is, the water depth h should be nonnegative at all
times.
This property ensures a robust performance of the
method on dry (h = 0) and almost dry (h ∼ 0)
states.



Semi-discrete central-upwind scheme

Central-Upwind schemes were developed for multidimensional
hyperbolic systems of conservation laws in 2000 − 2007 by
Kurganov, Lin, Noelle, Petrova, Tadmor, ...

• Central-Upwind schemes are Godunov-type finite-
volume projection-evolution methods:

• At each time level a solution is globally approxi-
mated by a piecewise polynomial function,

• Which is then evolved to the new time level using
the integral form of the conservation law system.

Semi-Discrete Central-Upwind Scheme



Key ideas of the scheme development for 
Saint-Venant system

• Change of conservative variables from (h, hu, hv)T to
(w := h + B, hu, hv)T

• Replacement of the bottom topography function B
with its continuous piecewise linear (or bilinear in
the 2-D case) approximation

• Special positivity preserving correction of the
piecewise linear reconstruction for the water sur-
face w

• Development of a special finite-volume-type
quadrature for the discretization of the cell aver-
ages of the geometric source term.

Key ideas in the Development Scheme for
Saint-Venant System



Description of the scheme

• We describe now, our new second-order semi-
discrete central-upwind scheme for solving the
Saint-Venant system of shallow water equations on
triangular grids

• We first denote the water surface by w := h+B and
rewrite the original Saint-Venant system in terms
of the vector U := (w, hu, hv)T :

Ut + F(U, B)x + G(U, B)y = S(U, B)

where the fluxes and the source terms are:

F(U, B) =

(
hu,

(hu)2

w − B
+

1

2
g(w − B)2,

(hu)(hv)

w − B

)T

G(U, B) =

(
hv,

(hu)(hv)

w − B
,

(hv)2

w − B
+

1

2
g(w − B)2

)T

S(U, B) =
(
0,−g(w − B)Bx,−g(w − B)By

)T
.

Description of the Scheme



Description of the scheme: notations 
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• Triangulation T :=
⋃

j

Tj of the computational do-

main: triangular cells Tj of size |Tj|

• !njk := (cos(θjk), sin(θjk)) are the outer unit normals to
the corresponding sides of Tj of length #jk, k = 1, 2, 3,

• (xj, yj) are the coordinates of the center of mass for
Tj and Mjk = (xjk, yjk) is the midpoint of the k-th
side of the triangle Tj, k = 1, 2, 3

• Tj1, Tj2 and Tj3 are the neighboring triangles that
share a common side with Tj

Description of the Scheme: Notations



Description of the central-upwind scheme on 
triangular grids

Denote Uj(t) ≈
1

|Tj|

∫

Tj

U(x, y, t) dxdy.

Second order central-upwind scheme on triangular
grid for the Saint-Venant System:

dUj

dt
=

−
1

|Tj|

3∑

k=1

!jk cos(θjk)

ain
jk + aout

jk

[
ain

jkF(Ujk(Mjk), B(Mjk)) + aout
jk F(Uj(Mjk), B(Mjk))

]

−
1

|Tj|

3∑

k=1

!jk sin(θjk)

ain
jk + aout

jk

[
ain

jkG(Ujk(Mjk), B(Mjk)) + aout
jk G(Uj(Mjk), B(Mjk))

]

+
1

|Tj|

3∑

k=1

!jk

ain
jka

out
jk

ain
jk + aout

jk

[
Ujk(Mjk) − Uj(Mjk)

]
+ Sj,

Description of the Central-Upwind Scheme
on Triangular Grids



Description of the central-upwind scheme on 
triangular grids

• Uj(Mjk) and Ujk(Mjk) are the corresponding values
at Mjk of the piecewise linear reconstruction

Ũ(x, y) := Uj +(Ux)j(x−xj)+ (Uy)j(y− yj), (x, y) ∈ Tj

of U at time t

• The quantity Sj in the scheme is an appropriate dis-
cretization of the cell averages of the source term

• The directional local speeds ain
jk and aout

jk are defined
by

ain
jk(Mjk) = −min{λ1[Vjk(Uj(Mjk))],λ1[Vjk(Ujk(Mjk)], 0},

aout
jk (Mjk) = max{λ3[Vjk(Uj(Mjk))],λ3[Vjk(Ujk(Mjk)], 0},

where λ1 [Vjk] ≤ λ2 [Vjk] ≤ λ3 [Vjk] are the eigenvalues
of the matrix Vjk = cos(θjk)

∂F
∂U + sin(θjk)

∂G
∂U.

• A fully discrete scheme is obtained by using a sta-
ble ODE solver of an appropriate order

Description of the Central-Upwind Scheme
on Triangular Grids



Calculation of the numerical derivatives of the ith 
component of U

• Construct three linear interpolations L12
j (x, y),

L23
j (x, y) and L13

j (x, y): conservative on Tj and two
of the neighboring triangles (Tj1, Tj2), (Tj2, Tj3) and
(Tj1, Tj3)

• Select the linear piece with the smallest magnitude
of the gradient, say, Lkm

j (x, y), and set

((U(i)
x )j, (U

(i)
y )j)

T = ∇Lkm
j

• Minimize the oscillations by checking the appear-
ance of local extrema at the points Mjk, 1, 2, 3

Calculation of the numerical derivatives of
the ith component of U, (U(i)

x )j and (U(i)
y )j



Piecewise linear approximation of the bottom

• Replace the bottom topography function B with
its continuous piecewise linear approximation B̃,
which over each cell Tj is given by the formula:
∣∣∣∣∣∣∣∣∣

x − x̃j12 y − ỹj12 B̃(x, y) − Bj12

x̃j23 − x̃j12 ỹj23 − ỹj12 Bj23 − Bj12

x̃j13 − x̃j12 ỹj13 − ỹj12 Bj13 − Bj12

∣∣∣∣∣∣∣∣∣

= 0, (x, y) ∈ Tj.

• Bjκ are the values of B̃ at the vertices (x̃jκ, ỹjκ), κ =
12, 23, 13, of the cell Tj

Piecewise Linear Approximation of the
Bottom

• Bjκ := 1
2(maxξ2+η2=1 limh,$→0 B(x̃jκ + hξ, ỹjκ + $η) +

minξ2+η2=1 limh,$→0 B(x̃jκ + hξ, ỹjκ + $η)),

• If the function B is continuous at (x̃jκ, ỹjκ): Bjκ =
B(x̃jκ, ỹjκ)

• Denote by Bjk the value of the continuous piecewise
linear reconstruction at Mjk, Bjk := B̃(Mjk),
and by Bj := B̃(xj, yj) the value of the reconstruction
at the center of mass (xj, yj) of Tj,

• Notice that, in general, Bjk "= B(Mjk) and

Bj =
1

|Tj|

∫

Tj

B̃(x, y) dxdy,

• One can easily show that

Bj =
1

3
(Bj1 + Bj2 + Bj3) =

1

3
(Bj12 + Bj23 + Bj13) .



Positivity preserving reconstruction for  w

The idea of the algorithm that guarantees positivity of
the reconstructed values of the water depth hj(Mjk) :=
wj(Mjk) − Bjk, k = 1, 2, 3, for all j:

• The reconstruction w̃ should be corrected only in
those triangles, where w̃(x̃jκ, ỹjκ) < Bjκ for some κ,
κ = 12, 23, 13

• Since wj ≥ Bj, it is impossible to have w̃(x̃jκ, ỹjκ) <
Bjκ for all three values of κ: at all three vertices of
the triangle Tj

• Two cases in which a correction is needed are pos-
sible:
either there are two indices κ1 and κ2, for which
w̃(x̃jκ1

, ỹjκ1
) < Bjκ1

and w̃(x̃jκ2
, ỹjκ2

) < Bjκ2
,

or there is only one index κ1, for which w̃(x̃jκ1
, ỹjκ1

) <
Bjκ1

Positivity Preserving Reconstruction for w



Well-balanced discretization of the source term

• The well-balanced property of the scheme is guar-
anteed if the discretized cell average of the source
term, Sj, exactly balances the numerical fluxes

• The desired quadrature for the source term that
will preserve stationary steady states (Ujk(Mjk) ≡
Uj(Mjk) ≡ (C, 0, 0)T , ∀j, k) is given by:

S
(2)
j =

g

2|Tj|

3∑

k=1

!jk(wj(Mjk) − Bjk)
2 cos(θjk) − g(wx)j(wj − Bj)

S
(3)
j =

g

2|Tj|

3∑

k=1

!jk(wj(Mjk) − Bjk)
2 sin(θjk) − g(wy)j(wj − Bj)

Well-Balanced Discretization of the Source
Term



Main theorem: positivity property of the new 
scheme

Theorem 1 Consider the Saint-Venant system in the
new variables U := (w, hu, hv)T and the central-upwind
semi-discrete scheme (with well-balanced quadrature
for the source S, positivity preserving reconstruction
for w)

• Assume that the system of ODEs for the fully
discrete scheme is solved by the forward Euler
method and that for all j, wn

j − Bj ≥ 0 at time
t = tn

• Then, for all j, wn+1
j − Bj ≥ 0 at time t = tn+1 =

tn + dt, provided that dt ≤ 1
6a minj,k {rjk}, where a :=

maxj,k{aout
jk , ain

jk} and rjk, k = 1, 2, 3, are the altitudes
of triangle Tj

Remark. Theorem 1 is still valid if one uses a higher-order
SSP ODE solver (either the Runge-Kutta or the multistep
one), because such solvers can be written as a convex com-
bination of several forward Euler steps.

Positivity Preserving Reconstruction for w



Accuracy test

The scheme is applied to the Saint-Venant system sub-
ject to the following initial data and the bottom to-
pography:

w(x, y, 0) = 1, u(x, y, 0) = 0.3,

B(x, y) = 0.5 exp(−25(x − 1)2 − 50(y − 0.5)2).

• For a reference solution, we solve this problem with
our method on a 2 × 400 × 400 triangular grid

• By t = 0.07 the solution converges to the steady
state

Accuracy Test



Accuracy test

• w component of the reference solution of
the IVP on a 2 × 400 × 400 grid: the 3-
D view (left) and the contour plot (right).
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• L1- and L∞-errors and numerical orders of accuracy.

Number of cells L1-error Order L∞-error Order
2 × 50 × 50 6.59e-04 – 8.02e-03 –
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Accuracy Test

• w component of the reference solution of
the IVP on a 2 × 400 × 400 grid: the 3-
D view (left) and the contour plot (right).
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Accuracy Test



Small perturbation of a stationary steady-state 
solution

• Solve the initial value problem (IVP) proposed by
R.Leveque.

• The computational domain is [0, 2] × [0, 1] and the
bottom consists of an elliptical shaped hump:

B(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2).

• Initially, the water is at rest and its surface is flat
everywhere except for 0.05 < x < 0.15:

w(x, y, 0) =

{
1 + ε, 0.05 < x < 0.15,
1, otherwise,

u(x, y, 0) ≡ v(x, y, 0) ≡ 0,

where the perturbation height is ε = 10−4

Small Perturbation of a Stationary
Steady-State Solution



Perturbation of a stationary steady-state: well-balanced 
scheme (left) and non well-balanced (right) 



Perturbation of a stationary steady-state:  well-
balanced scheme (left) and non well-balanced (right) 



Saint-Venant System with friction and 
discontinuous  bottom

• More realistic shallow water models include addi-
tional friction and/or viscosity terms

• Presence of friction and viscosity terms guarantees
uniqueness of the steady state solution

• We consider the simplest model in which only fric-
tion terms, −κ(h)u and −κ(h)v, are added to the
rhs of the second and third equations of the Saint-
Venant System





ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1

2
gh2

)

x
+ (huv)y = −ghBx − κ(h)u,

(hv)t + (huv)x +
(
hv2 +

1

2
gh2

)

y
= −ghBy − κ(h)v.



Saint-Venant System with friction and discontinuous  
bottom

• We numerically solve the shallow water model with
friction term on the domain [−0.25, 1.75] × [−0.5, 0.5]

• We assume that the friction coefficient is

κ(h) = 0.001(1 + 10h)−1

• The bottom topography function has a discontinu-
ity along the vertical line x = 1 and it mimics a
mountain river valley
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Saint-Venant System with friction and discontinuous  
bottom: description of the initial and boundary 

conditions
• We implement reflecting (solid wall) boundary con-

ditions at all boundaries

• Our initial data correspond to the situation when
the second of the three dams, initially located at
the vertical lines
x = −0.25 (the left boundary of the computational do-
main), x = 0, and x = 1.75 (the right boundary of the
computational domain),
breaks down at time t = 0, and the water propa-
gates into the initially dry area x > 0, and a “lake at
rest” steady state is achieved after a certain period
of time



• We plot 1-D slices of the numerical solution along
the y = 0 line

• Plots clearly show the dynamics of the fluid flow
as it moves from the region x < 0 into the initially
dry area x > 0 and gradually settles down into a
“lake at rest” steady state

• This state includes dry areas and therefore its com-
putation requires a method that is both well-balanced
and positivity preserving on the entire computational do-
main
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putation requires a method that is both well-balanced
and positivity preserving on the entire computational do-
main

• We plot 1-D slices of the numerical solution along
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putation requires a method that is both well-balanced
and positivity preserving on the entire computational do-
main



Flow in converging-diverging channel

• The exact geometry of each channel is determined
by its breadth, which is equal to 2yb(x), where

yb(x) =

{
0.5 − 0.5(1 − d) cos2(π(x − 1.5)), |x − 1.5| ≤ 0.5,
0.5, otherwise,

• d = 0.6 is the minimum channel breadth

d

Flow in Converging-Diverging Channel



Flow in converging-diverging channel

• The initial conditions:

w(x, y, 0) = max
{

1, B(x, y)
}

, u(x, y, 0) = 2, v(x, y, 0) = 0.

• The upper and lower y-boundaries are reflecting
(solid wall), the left x-boundary is an inflow bound-
ary with u = 2 and the right x-boundary is a zero-
order outflow boundary

• The bottom topography is given by

B(x, y) =
(
e−10(x−1.9)2−50(y−0.2)2 + e−20(x−2.2)2−50(y+0.2)2

)
,
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Flow in Converging-Diverging Channel



Flow in converging-diverging channel: w

Steady-state solution (w) for (d,Bmax) = (0.6, 1) on
2 × 200 × 200 (left) and 2 × 400 × 400 (right) grids.

w
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Flow in Converging-Diverging Channel: w
component



Conclusions/Difficulties 

• We developed a simple central-upwind scheme for
the Saint-Venant system on triangular grids

• We proved that the scheme both preserves station-
ary steady states (lake at rest) and guarantees the
positivity of the computed fluid depth

• It can be applied to models with discontinuous bot-
tom topography and irregular channel widths

• Method is sensitive to the accuracy of the bound-
ary representation

• S. Bryson, Y. Epshteyn, A. Kurganov and
G. Petrova, Well-Balanced Positivity Preserving
Central-Upwind Scheme on Triangular Grids for
the Saint-Venant System, to appear, ESAIM:
M2AN 2010.

Conclusions/Difficulties


