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Internal Waves

• Gravity waves that oscillate within, rather than on the surface, of a fluid
medium.

• Arise from perturbations to hydrostatic equilibrium:

a simple example – wave propagation on the interface between two
different fluids of different densities.

• Typically have much lower frequencies and higher amplitudes than surface
waves.

• Appear in both the ocean and atmosphere (100-200km long, 100m tall):

Propagate deep down in the oceans where denser, colder and saltier deep
waters meet warmer, fresher and less dense upper waters.

Play an important role in maintaining the large-scale, deep circulation,
by providing downward mixing of heat.
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This artificially colored image from space of the Strait of Gibraltar shows
internal waves (wavelength about 2 km) which seem to move from the
Atlantic ocean to the Mediterranean Sea, at the east of Gibraltar and
Ceuta.
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Synthetic Aperture Radar (SAR) images from Space Shuttle observations
of the South China Sea surface. [Holm & Staley (2005)]

3



EPDiff Equation – Model of Active Fluid Transport

[Holm & Marsden (2005), Holm & Staley (2003,05)]

∂m
∂t

+ u · ∇m︸ ︷︷ ︸
convection

+∇uT ·m︸ ︷︷ ︸
streching

+ m(div u)︸ ︷︷ ︸
expansion

= 0, m = u− α2∆u.

u – fluid velocity; m – wave momentum; α – a constant parameter.

• models internal wave fronts as delta functions of momentum distributed
on moving curves in the plane =⇒ this corresponds to modeling
internal waves as contact discontinuities in the velocity.

• it has a characteristic velocity, but the relation between fluid’s velocity
and momentum is nonlocal.

• the velocity profile is obtained via the given relation between wave
momentum and fluid velocity (the elliptic equation arises from
nonhydrostatic processes).

• weak solutions – contact discontinuities that carry momentum → the
front interactions – are collisions, in which momentum is exchanged.
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EPDiff Equation

∂m
∂t

+ u · ∇m︸ ︷︷ ︸
convection

+∇uT ·m︸ ︷︷ ︸
streching

+ m(div u)︸ ︷︷ ︸
expansion

= 0, m = u− α2∆u.

Some other applications:

• Camassa-Holm (CH) equation of shallow water in 1-D and 2-D [Camassa
& Holm (1993), Kruse, Schuerle & Du (2001)];

• Averaged template matching (ATM) equation for computer vision
[Hirani, Marsden & Arvo (2001), Holm & Marsden (2005)];

• Geometrical structures in computational anatomy, such as landmarks and
image outlines, can also be described by singular solutions of the EPDiff
equation [Holm, Ratnanather, Trouvé, & Younes (2004)];

• Applying the proper viscosity and enforcing incompressibility produces
the Navier-Stokes-alpha model of turbulence [Chen, Foias, Holm, Olson,
Titi & Wynne (1998)].
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1-D EPDiff Equation

mt + (um)x + uxm = 0, m = u− α2uxx, lim
|x|→∞

u = 0.

• Fokas & Fuchssteiner (1981) – a formally bi-Hamiltonian nonlinear PDE.

• EPDiff equation is the dispersionless limit of the CH equation [Camassa
& Holm (1993)] – a model for shallow water waves:

mt + (um)x + uxm = −c0ux − γuxxx︸ ︷︷ ︸
dispersion

, m = u− α2uxx,

If α→ 0, then CH equation → KdV equation.

• EPDiff equation + viscosity:

mt + (um)x + uxm = νmxx, m = u− α2uxx.

When α→ 0, then EPDiff with viscosity → Burgers’ equation.
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1-D EPDiff Equation – Properties [CH, 1993]

mt + (um)x + uxm = 0, m = u− α2uxx

• it is conservative

– it is bi-Hamiltonian

H1 =
1

2α

∫
R

(
u2 + u2

x

)
dx and H2 =

1
2α

∫
R

(
u3 + uu2

x

)
dx

– it possesses an infinite number of conservation laws

– it is completely integrable

• it is nonlocal

• has interesting and unusual solution properties:

– admits peaked solitary waves (peakons)

– it features breaking phenomena
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Traveling Wave Solutions of the 1-D EPDiff equation

CH equation: mt + (um)x + uxm = 0, m = u− α2uxx

or
ut − α2uxxt + 3uux = α2 (2uxuxx + uuxxx)

We seek a solution of the form

u(x, t) = U(x− ct), U(±∞) = U ′(±∞) = U ′′(±∞) = 0

and obtain the following ODE for U :

−cU ′ + α2cU ′′′ + 3UU ′ = α2 (U ′U ′′ + UU ′′′) .

After solving the above ODE, we obtain:

u(x, t) = ce−|x−ct|/α, c = Umax.
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N-Peakon Solutions, [CH, 1993]

mt + (um)x + uxm = 0, m = u− α2uxx

Solution ansatz for N interacting peakons:

u(x, t) =
N∑
i=1

pi(t)e−|x−qi(t)|/α

Hamilton’s canonical equations for qi and pi:

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

, i = 1, . . . , N,

where

H =
1

2α

N∑
i=1

N∑
j=1

pi(t)pj(t)e−|qi(t)−qj(t)|/α.
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Two-Peakon Dynamics

Consider

• 2 peakons, α = 1: u(x, t) = p1e
−|x−q1(t)| + p2e

−|x−q2(t)|.

• γ is the initial separation of peaks.

• initial speeds c1 > 0 and c1 > c2, so the peakons collide.

Denote
P = p1 + p2, p = p1 − p2,

Q = q1 + q2, q = q1 − q2,
Then

Ṗ = 0, ṗ =
1
2
[
P 2 − p2

]
sign(q)e−|q|,

Q̇ = P
(

1 + e−|q|
)
, q̇ = p

(
1− e−|q|

)
.

Solving the system of ODEs, we obtain ...
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Two-Peakon Dynamics – Continued

q1 − q2 = − ln

[
4γ(c1 − c2)2e(c1−c2)t(

γe(c1−c2)t + 4c21
) (
γe(c1−c2)t + 4c21

)] ,
p1 − p2 = ±(c1 − c2)

γe−(c1−c2)t − 4c1c2
γe−(c1−c2)t + 4c1c2

.

Also,
p1 + p2 = c1 + c2.

• overlapping peaks: may occur only c1 and c2 have opposite signs.
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Numerical Challenges

• Solutions are contact discontinuities
in the fluid (are discontinuous in the
gradient of the velocity that move
along with the flow).

• Various methods exist that accurately
capture shocks and vortices.

• Considerably less is known about
designing numerical methods for

– capturing contacts

– characterizing their nonlinear
interactions, especially in higher
dimensions.
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Numerical Methods

There are only a few numerical works to solve the EPDiff equation.

• 1-D:

– FD method [Coclite & Karlsen & Riseboro (2008)];

– FD method [Holden & Raynaud (2006)];

– Adaptive upwinding [Artebrant & Schroll (2006)];

– DG method [Shu & Xu, 2008];

Computationally demanding; require a large number of grid points
along with adaptivity techniques; unable to capture peakon-antipekon
interaction.

• 2-D and 3-D: the level of numerical complexity increases even further,
since the nonlinear interaction between the waves may lead to an
extremely complicated structure of the solutions.

– Compatible differencing algorithm (CDA) [Holm & Staley,
unpublished];
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Particle Method

∂m
∂t

+ u · ∇m +∇uT ·m + m(div u) = 0, m = u− α2∆u,

m0(x) = m(x, 0).

1. approximate the initial data

mN(x, 0) =
N∑
i=1

pi(0)δ(x− xi(0))

2. follow the time evolution of particles

dxi
dt

= · · · , dpi
dt

= · · ·

3. a particle solution is given by

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))
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Particle Methods for the EPDiff Equation

• Methods derived using a discretization of a variational principle:

– Integral and integrable algorithms in 1-D [Camassa & Huang & Li
(2005,2006)];

– Study of the dynamics of N point particles (“blobs”) [McLachlan &
Marsland (2007)];

• An equivalent representation of the particle system, which is obtained by
considering a weak formulation of the problem.

[A.C. & Philip Du Toit & Jerrold Marsden]

.
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Particle Method for EPDiff – 1-D
Consider

mt + (um)x + uxm = 0, m(x, 0) = m0(x)

Substitute

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))

into the weak formulation (φ ∈ C1
0(R× [0, T )))

∫ T

0

∫
R
mtφdxdt+

∫ T

0

∫
R
(um)xφdxdt+

∫ T

0

∫
R
uxmφdxdt = 0

or

−
∫

R
m(x, 0)φ(x, 0) dx−

∫ T

0

∫
R
m [φt + uφx] dx dt+

∫ T

0

∫
R
uxmφdxdt = 0
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Particle Method for EPDiff – 1-D

−
N∑
i=1

pi(0)φ(xi(0), 0)−
N∑
i=1

∫ T

0

pi(t) [φt(xi(t), t) + u(xi(t), t)φx(xi(t), t)] dt

+
N∑
i=1

∫ T

0

pi(t)ux(xi(t), t)φ(xi(t), t) dt = 0

−
N∑
i=1

pi(0)φ(xi(0), 0)−
N∑
i=1

∫ T

0

pi(t)
[
φt(xi(t), t) +

dxi(t)
dt

φx(xi(t), t)
]
dt

+
N∑
i=1

∫ T

0

pi(t)
[
dxi(t)
dt
− u(xi(t), t)

]
φx(xi(t), t) dt

+
N∑
i=1

∫ T

0

pi(t)ux(xi(t), t)φ(xi(t), t) dt = 0

18



Particle Method for EPDiff – 1-D

−
N∑
i=1

pi(0)φ(xi(0), 0)−
N∑
i=1

∫ T

0

pi(t)
dφi(xi(t), t)

dt
dt

+
N∑
i=1

∫ T

0

pi(t)
[
dxi(t)
dt
− u(xi(t), t)

]
φx(xi(t), t) dt

+
N∑
i=1

∫ T

0

pi(t)ux(xi(t), t)φ(xi(t), t) dt = 0

Integrating by parts ...

∫ T

0

N∑
i=1

dpi(t)
dt

φ(xi(t), t) dt+
∫ T

0

N∑
i=1

pi(t)
[
dxi(t)
dt
− u(xi(t), t)

]
φx(xi(t), t) dt

+
N∑
i=1

∫ T

0

pi(t)ux(xi(t), t)φ(xi(t), t) dt = 0
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Particle Method for EPDiff – 1-D

Consider
mt + (um)x + uxm = 0, m(x, 0) = m0(x)

Looking for a solution in the form:

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))

yields


dxi
dt

= u(xi(t), t), xi(0) = x0
i ,

dpi
dt

+ ux(xi(t), t)pi = 0, pi(0) = p0
i .
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Particle Method for EPDiff – 1-Dmt + (um)x + uxm = 0, m = u− α2uxx

Solution of the form:

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t)),

dxi
dt

= uN(xi(t), t),
dpi
dt

+ uNx (xi(t), t)pi = 0.

The velocities:

mN =
N∑
i=1

pi(t)δ(x− xi(t)) = uN − α2uNxx

uN(x, t) =
1
2

N∑
i=1

pi(t)e−|x−xi(t)|/α

uNx (x, t) =
1
2

N∑
i=1

pi(t)sgn(x− xi(t))e−|x−xi(t)|/α.
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xi(0) =⇒ xi(t)

pi(0) =
{

1, i = k,
0, i 6= k,

=⇒ pi(t) = pi(0).
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The three “nonzero” peakons:

xn1(0) = 0, xn2(0) = 4 and xn3(0) = 10

with the weights

pn1(0) = 3, pn2(0) = 2 and pn3(0) = 1.
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movie
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peakons1D.mov
Media File (video/quicktime)



Peakon-antipeakon interaction:

xn1(0) = 0 and xn2(0) = 18

have momenta of equal magnitude but opposite sign

pn1(0) = 2, pn2(0) = −2

so that the total momentum is zero.
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Properties of the Particle System

mt + (um)x + uxm = 0, m = u− α2uxx

Particle solution: mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))

dxi
dt

= uN(xi(t), t),
dpi
dt

+ uNx (xi(t), t)pi = 0.

Hamiltonian function:

HN(t;x, p) =
1

2α

N∑
i=1

N∑
j=1

pi(t)pj(t)e−|xi(t)−xj(t)|/α

Canonical Hamiltonian equations:

dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −∂H
N

∂xi
, j = 1, . . . , N.
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Same Equations via Variational Method Approach

mt + (um)x + uxm = 0, m = u− α2uxx

Solution: mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))

Hamiltonian function: HN(t;x, p) = 1
2α

N∑
i=1

N∑
j=1

pi(t)pj(t)e−|xi(t)−xi(t)|/α

The function mN is a weak solution of EPDiff equation if xi(t) and pi(t)
satisfy the Hamilton’s variational principle in the phase space, that is,

δ

T∫
0

N∑
i=1

[
piẋi −HN(t;xi, pi)

]
dt =

T∫
0

N∑
i=1

[(
ẋi −

∂HN

∂pi

)
δpi −

(
ṗi +

∂HN

∂xi

)
δxi

]
dt = 0, ∀ δxi, δpi
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Two-Dimensional Case

mt + u · ∇m +∇uT ·m + m(div u), m = u− α2∆u

A singular momentum solution is

m(x, t) =
N∑
i=1

pj(t)δ(x− xi(t))

The Green’s function for the Helmholtz operator:

u = G ∗m, G(|x|) =
1

2π
K0

(
|x|
α

)
,

u(x, t) =
1

2πα2

N∑
i=1

pi(t)K0

(
|x− xi|

α

)
,

where K0 is the modified Bessel function.
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Particle Method

mt + u · ∇m +∇uT ·m + m(div u), m = u− α2∆u

Here u = (u, v)T , m = (m1,m2)T , and x = (x, y)T .

We rewrite the equation in the coordinate form,

∂m1

∂t
+ (um1)x + (vm1)y +m1ux +m2vx = 0,

∂m2

∂t
+ (um2)x + (vm2)y +m1uy +m2vy = 0,

and seek a solution m = (m1,m2)T of the form

mN
k (x, y, t) =

N∑
i=1

pk,i(t)δ(x− xi(t))δ(y − yi(t)), k = 1, 2.
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Particle Method – Continued

dxi(t)
dt

= uN(xi(t), t),

dyi(t)
dt

= vN(xi(t), t),

dp1,i(t)
dt

= −uNx (xi(t), t) p1,i(t)− vNx (x(t), t) p2,i(t),

dp2,i(t)
dt

= −uNy (xi(t), t) p1,i(t)− vNy (xi(t), t) p2,i(t),

uN(xi, t) =
1

2πα2

N∑
j=1

p1,j(t)K0,ε

(
|xi − xj|

α

)
,

vN(xi, t) =
1

2πα2

N∑
j=1

p2,j(t)K0,ε

(
|xi − xj|

α

)
.
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Cutoff Example and Construction of Mollified Kernel

Simple example:

ζε(x) =
1

2πε2
e
−|x|

2

2ε2 ,

Smoothed kernel K0,ε:

K0,ε

(
|x|
α

)
= K0 ∗ ζε(x) =

∫
R2

K0

(
|x− y|
α

)
ζε(y) dy.

Using Fourier transform, one can obtain

K0,ε(|x|) =
∫ ∞

0

rJ0(r|x|) α
2e−

r2ε2

2

1 + α2r2
dr,

where J0(x) is the Bessel function of the first kind given by

J0(x) =
∞∑
k=0

(−1)k

22k(k!)2
x2k.
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Properties of the Particle System

The Hamiltonian function:

HN(t; x,p) =
1

4πα2

N∑
i=1

N∑
j=1

[p1,ip1,j + p2,ip2,j]K0,ε

(
|xi − xj|

α

)
.

• xj(t) and pj(t) satisfy the canonical Hamiltonian equations:

dxj
dt

=
∂HN

∂pj
,

dpj
dt

= −∂H
N

∂xj
, j = 1, . . . , N.

The same Hamiltonian equations can be obtained using the
variational method approach!
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Properties of the Particle System

• Lemma [Conservation of Linear Momentum]:

d

dt

[
N∑
i=1

p1,i(t) +
N∑
i=1

p2,i(t)

]
= 0, ∀t ≥ 0.

• Lemma [Conservation of Angular Momentum]:

N∑
i=1

[
dxi
dt

p2,i −
dyi
dt

p1,i + xi
dp2,i

dt
− yi

dp1,i

dt

]
= 0.

• Theorem : The Hamiltonian

HN(t; x,p) =
1

4πα2

N∑
i=1

N∑
j=1

[p1,ip1,j + p2,ip2,j]K0,ε

(
|xi − xj|

α

)

is invariant under translation and rotation.
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• Convergence of the particle method in 1-D (with Jian-Guo Liu and
Terrance Pendleton):

– Use the fact that the particle ODE system has a unique global solution [Camassa
& Huang & Li (2005)];

– Define a weak solution of the EPDiff equation and show that the particle solution

(uN ,mN) is a weak solution of the equation;

– Show that there exist a limit (uN ,mN)→ (u,m) as N →∞:

∗ show that uN and uNx are BV functions in space and time.

∗ use a compactness result, associated with BV functions, to show that the limit

exists .

– Show that the limit (u,m) is also a weak solution to the EPDiff equation.

• Numerical experiments for general initial data and convergence of the
particle method in 2-D.

• Integrability of the 2-D equation.
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