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Internal Waves

Gravity waves that oscillate within, rather than on the surface, of a fluid
medium.

Arise from perturbations to hydrostatic equilibrium:

a simple example — wave propagation on the interface between two
different fluids of different densities.

Typically have much lower frequencies and higher amplitudes than surface
waves.

Appear in both the ocean and atmosphere (100-200km long, 100m tall):

Propagate deep down in the oceans where denser, colder and saltier deep
waters meet warmer, fresher and less dense upper waters.

Play an important role in maintaining the large-scale, deep circulation,
by providing downward mixing of heat.




This artificially colored image from space of the Strait of Gibraltar shows
internal waves (wavelength about 2 km) which seem to move from the

Atlantic ocean to the Mediterranean Sea, at the east of Gibraltar and
Ceuta.
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Synthetic Aperture Radar (SAR) images from Space Shuttle observations
of the South China Sea surface. [Holm € Staley (2005)]



EPDiff Equation — Model of Active Fluid Transport
[Holm & Marsden (2005), Holm & Staley (2003,05)]
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u — fluid velocity; m — wave momentum; o« — a constant parameter.

models internal wave fronts as delta functions of momentum distributed
on moving curves in the plane =  this corresponds to modeling
internal waves as contact discontinuities in the velocity.

it has a characteristic velocity, but the relation between fluid's velocity
and momentum is nonlocal.

the velocity profile is obtained via the given relation between wave
momentum and fluid velocity (the elliptic equation arises from
nonhydrostatic processes).

weak solutions — contact discontinuities that carry momentum — the
front interactions — are collisions, in which momentum is exchanged.




EPDiff Equation
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Some other applications:

e Camassa-Holm (CH) equation of shallow water in 1-D and 2-D [Camassa
¢ Holm (1993), Kruse, Schuerle & Du (2001)];

e Averaged template matching (ATM) equation for computer vision
|Hirani, Marsden € Arvo (2001), Holm & Marsden (2005)];

e Geometrical structures in computational anatomy, such as landmarks and
image outlines, can also be described by singular solutions of the EPDiff
equation [Holm, Ratnanather, Trouvé, & Younes (2004)];

e Applying the proper viscosity and enforcing incompressibility produces
the Navier-Stokes-alpha model of turbulence [ Chen, Foias, Holm, Olson,
Titi & Wynne (1998)].




1-D EPDiff Equation

me + (um)y +uzm =0, m=u— *Uyy, lim » = 0.

x| — 00
e Fokas & Fuchssteiner (1981) — a formally bi-Hamiltonian nonlinear PDE.

e EPDIff equation is the dispersionless limit of the CH equation [Camassa
& Holm (1993)] — a model for shallow water waves:

2
my + (Um), + upgm = —Colly — Ylaza, m=u— Q& Ugy,
VO
dispersion

If « — 0, then CH equation — KdV equation.
e EPDIiff equation + viscosity:
2

me + (um)g + Ugm = Vg, m=1u— Q Ugpy.

When a — 0, then EPDiff with viscosity — Burgers’ equation.




1-D EPDiff Equation — Properties [CH, 1993]

m¢ + (um), + uym = 0, m=u— o Uy,

It IS conservative

— it i1s bi-Hamiltonian

1 1
H, :%/<u2—|—ui) dr and Hy = %/(u?’—l—uui) dx
R R

— it possesses an infinite number of conservation laws
— it is completely integrable

it 1s nonlocal

has interesting and unusual solution properties:
— admits peaked solitary waves (peakons)

— it features breaking phenomena




Traveling Wave Solutions of the 1-D EPDiff equation

CH equation:  my; + (um), + uzm = 0, m = u— o2y,

or
2 — A2(2
Up — QA Ut + Uy = @ (2UzpUgpy + Ulggy)

We seek a solution of the form
uw(x,t) =U(x —ct), U(too) =U'(+oo)=U"(+0) =0
and obtain the following ODE for U:
—cU' + a*cU" 4+ 30U = o* (U'U" +UU") .
After solving the above ODE, we obtain:

u(x,t) = celeetl/a, ¢ = Unax.




N-Peakon Solutions, [CH, 1993]

me + (um), + uym = 0, m=u— oy,
Solution ansatz for N interacting peakons:
N
U(aj, t) — sz(t)6_|m_ch(t)|/a
i=1
Hamilton's canonical equations for ¢; and p;:
— = and =——) 1=1,...
dt 6’pi dt a%j
where
;NN
_ . (e~ (t)—q;(t)]/a
H= 5 S pipy(pye a0 a0l

i=1 j=1




Two-Peakon Dynamics

Consider
o 2 peakons, o = 1: wu(x,t) = pre 1~ 0l 4 pre~lz—a(®)]
e 7 is the initial separation of peaks.

e initial speeds ¢; > 0 and ¢; > c¢s, so the peakons collide.

Denote
P = p1 + po, p = p1— po,
Q = q1 + q2, q = q1— q2,
Then . ]
P=o, P = : [PQ _pQ} sign(gq)e 19,

Q:P(1+e_|q|), qu(l—e—iql).

Solving the system of ODEs, we obtain ...

10




Two-Peakon Dynamics — Continued

4y(c1 — cg)2elcr—e2)t

veler—e)t 4 4¢?) (yeler—ca)t 4 4¢3) |
1 1

g1 — g2 = —1n

76_(61_02)t — 40162

7@_(01—02)t + 4ecqeo '

p1— p2 = £(c1 — ¢2)

Also,
P11+ p2 = €1 + Ca.

e overlapping peaks: may occur only ¢; and ¢y have opposite signs.
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Numerical Challenges

e Solutions are contact discontinuities
in the fluid (are discontinuous in the
gradient of the velocity that move
along with the flow).

e Various methods exist that accurately
capture shocks and vortices.

e Considerably less is known about
designing numerical methods for

— capturing contacts

— characterizing their nonlinear
interactions, especially in higher
dimensions.

0.5
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Numerical Methods

There are only a few numerical works to solve the EPDiff equation.

o 1-D:
— FD method [Coclite € Karlsen € Riseboro (2008)];
— FD method [Holden & Raynaud (20006 )];
— Adaptive upwinding [Artebrant & Schroll (2006));
— DG method [Shu € Xu, 2008];

Computationally demanding; require a large number of grid points
along with adaptivity techniques; unable to capture peakon-antipekon
Interaction.

e 2-D and 3-D: the level of numerical complexity increases even further,
since the nonlinear interaction between the waves may lead to an
extremely complicated structure of the solutions.

— Compatible differencing algorithm (CDA) [Holm €& Staley,
unpublished];

14



Particle Method

om

——+u-Vm+Vu' -m+m(divu) =0, m=u-—a’Au,

ot

mg(x) = m(x,0).

1. approximate the initial data

m™ (x,0) = Z Pi(0)o(x — x;(0))

2. follow the time evolution of particles

dXZ' o
dt

3. a particle solution is given by

dp;
’ dt

N

m(x, 1) = 3 pilt)o(x — xi(t)

1=1
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Particle Methods for the EPDiff Equation

e Methods derived using a discretization of a variational principle:

— Integral and integrable algorithms in 1-D [Camassa ¢ Huang € Li
(2005,2006)];

— Study of the dynamics of N point particles (“blobs”) [McLachlan &
Marsland (2007)];

e An equivalent representation of the particle system, which is obtained by
considering a weak formulation of the problem.

[A.C. & Philip Du Toit € Jerrold Marsden]
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Particle Method for EPDIiff — 1-D

Consider
me + (um)z + uzm = 0, m(z,0) = mo(x)

Substitute

sz ZIJ—ZEZ )

into the weak formulation (¢ € C}(R x [0,T)))

/OT/R m@ dxdt + /()T/R(um)xgb dxdt + /OT/R uzme drdt = 0

or

_/Rm(:,;,())gb(x’()) d:l?—/OT/Rm[¢t+U¢x] d:z:dt+/OT/Ruxmqbd:cdt:O

17




Particle Method for EPDIiff — 1-D

_Zpi(0)¢($i(0)ao) —Z/O pi(t) Gue(xi(t),t) + u(w;(t), t)du(2i(2), 1)) dt
+Z/O pi(t)ug(zi(t), t)p(ai(t), ) dt =0
=3 i 0)0(i0).0) = Y- [ ilt) |ttt ) + Z s i), 0)| a
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Particle Method for EPDIiff — 1-D

_sz Z/ pz dqbz xz )dt

1=1

+Z / pilt {dasz — w(zi(), )| pu(mst),t) dt

+Z/ i () (2:(8), ) d(ai(t), £) dt = 0

Integrating by parts ...
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Particle Method for EPDIiff — 1-D

Consider
me + (um), + u,m = 0,

Looking for a solution in the form:

yields
( dx;
<
dp;
| = + uy(xi(t), t)p; =

m(x,0) = mg(x)

O(x — x;(1))
7;(0) = ),
pi(0) :p?

20




me + (um), + u,m = 0, m=1u— Q& Uypy

Solution of the form:

m (z,1) = sz'(t)5(a: — z4(1)),
dz; dp;
= =uV@i(0),0), 2l (@), 0p = 0.

The velocities:

- %Zm(t)e—lw—xiuwa
1 =1

N
1
=3 > pilt)sgn(m — a;(t))e” FmEMIe,
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The three “nonzero” peakons:
Tn,(0) =0, 2,,(0) =4 and x,,,(0) = 10
with the weights

Py (0) = 3, ppy(0) = 2 and p,,,(0) = 1.
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Linear Momentum
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movie

25



peakons1D.mov
Media File (video/quicktime)


Peakon-antipeakon interaction:
Tn,(0) =0 and z,,(0) = 18
have momenta of equal magnitude but opposite sign
Py (0) =2, pn,(0) = =2

so that the total momentum is zero.
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Properties of the Particle System

me + (um), + u,m = 0, m=u— Uy,
N
Particle solution: m¥~(z,t) = > p;(t)6(x — 24(1))
i=1
dr; n dp; N _

Hamiltonian function:

H" (t; 2, p) Zzpz ~lzi(t)—z;()|/

1=1 7=1
Canonical Hamiltonian equations:

d.il?i 8HN dpi 6HN .
= : = — : 7=1,...,N.
dt 8]0@- dt 833@
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Same Equations via Variational Method Approach

me + (um), + u,m = 0, m=u— Uy,
N
Solution:  m"(x,t) = > pi(t)d(x — x4(¢))
i=1

(87

N N
Hamiltonian function: HY (t;2,p) = o= >° 3 pi(t)p;(t)e~ vt —zi(®)]/«
i=1j=1

The function m” is a weak solution of EPDiff equation if x;(t) and p;(t)
satisfy the Hamilton’s variational principle in the phase space, that 1s,

1 N

5/2 pits — HY (; 24, pi) | dt =

1T N

N N

Op; Ox;
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Two-Dimensional Case

m; +u-Vm+ Vu' -m+ m(divu), m=u-a*Au

A singular momentum solution is

N
m(x,t) = > p;(t)o(x — xi(t))
i=1
The Green's function for the Helmholtz operator:

1
W= Grm,  Gx]) = LK, (@) ,

where K is the modified Bessel function.
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Particle Method
m; +u-Vm+ Vu' -m+ m(divu), m=u-a*Au
Here u= (u,v)!, m = (my,mo)?, and x = (z,y)?.

We rewrite the equation in the coordinate form,

om

(%1 + (umy), + (vma)y + miug + mov, = 0,
67722

g + (uma), + (vma), + miu, + mov, = 0,

and seek a solution m = (my,ms)? of the form

30




Particle Method — Continued

dill‘z(t) N
TR U (Xz' (t), t)a
dy;(t) N
g v (Xz(t)7 t)’
L) L, 0,0 p1,0) — o 0, ) )
dp2 z(t) N
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Cutoff Example and Construction of Mollified Kernel

Simple example:
1 2

— (& 2e2
2me? ’

Ce(x)

Smoothed kernel K .:

Koo (2) = Kor o = [0 (P22) cyay.

Using Fourier transform, one can obtain

2 2

> ale T
K07€(‘X|):/ rJo(r|x]) dr
0

1+ a2r2 "’

where Jy(x) is the Bessel function of the first kind given by

- —1 i 2k
k=0
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Properties of the Particle System

The Hamiltonian function:

N N
N g, K |XZ X]l
H (t7 X? p) 47TOé ] 0 ,€

e x,(t) and p,(t) satisfy the canonical Hamiltonian equations:

dx; _OHY  dp;  OHT
dt B 8pj7 dt B an’

j=1,....N.

The same Hamiltonian equations can be obtained using the
variational method approach!
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Properties of the Particle System

e Lemma [Conservation of Linear Momentum]|:
g [N N
) lzpu(t) + ZPZ,i(t>] =0, vt > 0.
i=1 i=1

e Lemma [Conservation of Angular Momentum]:

N
dz; dyi dp27; dp1,i
i 0 — —Yi = = 0.
;Zl [ D2, pm —piit+ @ 7 Y ]

e Theorem : The Hamiltonian

Sl x; — x|
HY (t;x,p) = 47704 p1.i01,; + p2.ip2.5] Koe -

Is invariant under translation and rotation.
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skew2p.mov
Media File (video/quicktime)
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star2p.mov
Media File (video/quicktime)


e Convergence of the particle method in 1-D (with Jian-Guo Liu and
Terrance Pendleton):

— Use the fact that the particle ODE system has a unique global solution [Camassa
¢ Huang € Li (2005)];

— Define a weak solution of the EPDiff equation and show that the particle solution
(u’, m") is a weak solution of the equation;

— Show that there exist a limit (u”, m™) — (u, m) as N — oo:
« show that u” and uiv are BV functions in space and time.
* use a compactness result, associated with BV functions, to show that the limit

exists .
— Show that the limit (u, m) is also a weak solution to the EPDiff equation.

e Numerical experiments for general initial data and convergence of the
particle method in 2-D.

e Integrability of the 2-D equation.
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