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Mt. Rainier and Tacoma
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Mud and debris flows from Mt. Rainier
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Malpasset Dam Failure

Catastrophic failure in 1959
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Malpasset Dam Failure




Modeling work by David George, using GeoClaw

Coarse: 400m cell side, Level 2: 50m, Level 3: 12m, Level 4: 3m
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Grid convergence study

Water depth gauge at location P2 computed with two different
resolutions (using 4 levels or only 3):
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Quick test after yesterday’s discussion...
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Quick test after yesterday’s discussion...
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Chesapeake Bay and Anapolis

Timeline:
View Google Earth, download bathymetry: =~ 30 minutes
GeoClaw implementation started: 5:40pm

The run just shown...
Started: 6:16pm
Ended: 6:56pm

Went to dinner...

Making plots of 29 frames and movie:
Started: 7:58pm
Ended: 8:16pm
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Shallow water equations with bathymetry B(z, y)

h + (hu)y + (o), = 0

1
(hu): + (hu2 + 2gh2) + (huv)y, = —ghBg(z,y)

x

1
(hv) + (huv), + <h112 + 2gh2> —ghBy(z,y)

Y

Some issues:

e Delicate balance between flux divergence and bathymetry:
h varies on order of 4000m, rapid variations in ocean
Waves have magnitude 1m or less.

e Cartesian grid used, with & = 0 in dry cells:
Cells become wet/dry as wave advances on shore
Robust Riemann solvers needed.

e Adaptive mesh refinement crucial
Interaction of AMR with source terms, dry states
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Deep-ocean Assessment and Reporting of Tsunamis
NOAA’s Network of pressure gauges on the ocean floor

Surface at 1.00 hours
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Deep-ocean Assessment and Reporting of Tsunamis
NOAA’s Network of pressure gauges on the ocean floor

Surface at 5.00 hours
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Deep-ocean Assessment and Reporting of Tsunamis
NOAA’s Network of pressure gauges on the ocean floor

Surface at 7.00 hours
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Deep-ocean Assessment and Reporting of Tsunamis
NOAA’s Network of pressure gauges on the ocean floor

Surface at 9.00 hours
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National Oceanic and Atmospheric Administr

National Data Buoy Ce

Center of Excellence in Marine Technology

Home News Organization

“ Storm Special! View the |atest observations near Atlantic HURRICANE IGOR as of INTERMEDIATE

ADVISORY NUMBER 53A @ 800 AM AST TUE SEP 21 2010, Atlantic TROPICAL STORM LISA as of
ADVISORY NUMBER 2 @ 500 AM EDT TUE SEP 21 2010 and East Pacific TROPICAL STORM GEORGETTE
of SPECIAL ADVISORY NUMEER 1 @ 500 AM PDT TUE SEP 21 2010.

Observations via
Google Maps Station 32412 - 630 NM Southwest of Lima, Peru
Classic Maps

Recent
Historical Owned and maintained by National Data Buoy Center

DART® 2.6-meter discus bucy
MMS ADCP DART Il payload
Obs Search 17.975 5 86.392 W (17°58'30" 5 86°23'30" W)
Ship Obs Report
Gliders
Important Notice to Mariners
APEX Important Notice to Mariners

;‘:’%s Meteorological Observations from Nearby Stations and Ships Bl

Station 32412 - 630 NM Southwest of Lima, Peru

Owned and maintained by National Data Buoy Center
17.975 S 86.392 W (17°58'30" S 86°23'30" W)

Available historical data for station 32412 include:
+ Quality controlled data for 2010 (data descriptions)
o Water column height (Tsunami) (DART) data: Jan Feb Mar Apr May Jun Jul

» Historical data (data descriptions)
o Water column height (Tsunami) (DART) data: 2007 2008 2009

www.ndbc.noaa.gov/station_page.php?station=32412
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+4.3251e3 DART data and fit to tides
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+4.3251e3 DART data and fit to tides
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NOAA unit sources for subduction zone

Figure B2: Central and South America Subduction Zone unit sources.

From: Tang, L., V.V. Titov, and C.D. Chamberlin (2010): A Tsunami
Forecast Model for Hilo, Hawaii. NOAA OAR Special Report, PMEL
Tsunami Forecast Series: Vol. 1, 94
http://nctr.pmel.noaa.gov/pubs.html
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Response at DART 32412 from unit sources
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Response at DART buoy from unit earthquakes

Response at DART 32412 from unit sources
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Propagation in deep water is essentially linear...

Fit linear combination of these responses to DART data.
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— DART
— best fit
0.20

~*48000 10500 11000 11500 12000 12500 13000 13500 14000 14500

Best fit with constraint that all coefficients (dislocations)
positive.



Surface at 1.00 hours

020

0.16

0.12
-10

0.08
—20 0.04
=30 0.00

-0.04
—40

-0.08
=50

-0.12

9926 —130 -120 110 -100 —90 —80 —70 —60 Jl-016
—0.20

Surface at gauge 51406




CLAWPACK — www.clawpack.org

e Open source, 1d, 2d, 3d

Originally 77 with Matlab graphics.
Moving to f95 with Python.
Adaptive mesh refinement.
OpenMP and MPI.

User supplies:

¢ Riemann solver, splitting data into waves and speeds
(Need not be in conservation form)

e Boundary condition routine to extend data to ghost cells
Standard bc1. £ routine includes many standard BC’s

¢ Initial conditions — ginit.f

e Source terms — srcl.f
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Options for using Clawpack

@ |Install from tar file or Subversion: Instructions.
Requires some prerequisites: Fortran, Python modules.

® Use the VirtualClaw virtual machine.

@® For some applications, use EagleClaw
(Easy Access Graphical Laboratory for Exploring
Conservation Laws)

Also perhaps useful:
Class notes on Python, Fortran, version control, etc.
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http://kingkong.amath.washington.edu/uwamath583/sphinx/notes/html/index.html

Godunov’s Method for ¢; + f(q), =0
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1. Solve Riemann problems at all interfaces, yielding waves
Wf_l/g and speeds sf_l/g, forp=1,2,..., m.

Riemann problem: Original equation with piecewise constant
data.
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The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.00000000

Color is a passive tracer
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The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.20000000

Color is a passive tracer
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The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.30000000

Color is a passive tracer
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The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.40000000

Color is a passive tracer

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



The Riemann problem

Dam break problem for shallow water equations

(hu); + (hu® + %ghz)x =0

Depth at time t = 0.50000000

Color is a passive tracer
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contact
-~

Riemann solution for the SW equations

rarefaction wave

\\
\\\
; / [ by J

\L

The Roe solver uses the solution to a linear system
Az 1/2 = f/(Qave)

(]

qt + Ai—l/QQm =0

All waves are simply discontinuities
Typically a fine approximation if jumps are approximately

Coastal Flows Workshop, CSCAMM, Oct. 22, 2010

correct.
R. J. LeVeque



Godunov’s Method for ¢; + f(q), =0
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1. Solve Riemann problems at all interfaces, yielding waves
Wf_l/g and speeds sf_l/g, forp=1,2,..., m.

Riemann problem: Original equation with piecewise constant
data.
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Wave-propagation viewpoint

For linear system ¢; + Aq, = 0, the Riemann solution consists of

waves WP propagating at constant speed AP.
A2At

—Qi- 1—20% 1/2r _Z i—1/2°

QM = Q- P‘zWZ 2 FNWE e+ AW ]
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Upwind wave-propagation algorithm

At | &

n-+1 n
QT =qQr - Az Z(Sf—m W 1/2 +Z Sii12) Wi
p=1
where
sT = max(s,0), s~ = min(s,0).

Note: Requires only waves and speeds.
Applicable also to hyperbolic problems not in conservation form.

For ¢: + f(q). = 0, conservative if waves chosen properly,
e.g. using Roe-average of Jacobians.

Great for general software, but only first-order accurate (upwind
method for linear systems).
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Wave-propagation form of high-resolution method

Correction flux:
| My ; N
Fioijo = §£:|Sz 1/2| < msf—1/2|> M7?—1/2

where Wp is a limited version of W? | . to avoid oscillations.

—-1/2 —-1/2

(Unlimited waves WP = WP — Lax-Wendroff for a linear
system = nonphysical oscillations near shocks.)
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Summary of wave propagation algorithms

For ¢; + f(q). = 0, the flux difference

AAQ;_1/2 = f(Q:) — f(Qi-1)
is split into:

left-going fluctuation: A~ AQ);_1 /2, updates Q; 1,
right-going fluctuation: AT AQ;_1 /2, updates Q;,
Waves: Q; — Qi—1 = >_aPrP = > WP

Often take AXAQ;_1/2 = Y (s7)FWP.
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Summary of wave propagation algorithms

For ¢; + f(q). = 0, the flux difference

AAQ;_1/2 = f(Q:) — f(Qi-1)
is split into:

left-going fluctuation: A~ AQ);_1 /2, updates Q; 1,
right-going fluctuation: AT AQ;_1 /2, updates Q;,
Waves: Q; — Qi—1 = >_aPrP = > WP

Often take AXAQ;_1/2 = Y (s7)FWP.

f-wave formulation: Bale, RIL, Mitran, Rossmanith, SISC 2002

f-waves: f(Q;) — f(Qi—1) = > pBPrP =3 2P
Often take A*AQ;_1/2 = Y (sgn(sP)) =27,
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Summary of wave propagation algorithms

For ¢; + f(q). = 0, the flux difference

AAQ;_1/2 = f(Q:) — f(Qi-1)
is split into:

left-going fluctuation: A~ AQ);_1 /2, updates Q; 1,
right-going fluctuation: AT AQ;_1 /2, updates Q;,
Waves: Q; — Qi—1 = >_aPrP = > WP

Often take AXAQ;_1/2 = Y (s7)FWP.

f-wave formulation: Bale, RIL, Mitran, Rossmanith, SISC 2002

f-waves: f(Q;) — f(Qi—1) =D pPrP =5 ZP
Often take A*AQ;_1/2 = Y (sgn(sP)) =27,

In either case, limiters are applied to waves or f-waves for use
in high-resolution correction terms.

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Incorporating source term in f-waves

@+ f(@)z = Y(q)ox ()

Concentrate source at interfaces: V;_; /5(0; — 0i-1)
Split £(Qi) — f(Qi—1) = (i —0im1) Vi1 =30, 27 15

Use these waves in wave-propagation algorithm.

Steady state maintained:

If f(Qi)_AfI(Qifl) =T 1/ (Uz‘—AUgZ'—l) then 22 =0

Near steady state:

Deviation from steady state is split into waves and limited.
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Incorporating source term in f-waves

@+ f(@)z = Y(@)ow(r) = ¥;_y/9(0i — 0i-1)

Question: How to average 1 (q) between cells to get ¥,_; /57

A Well-Balanced Path-Integral f-wave Method for Hyperbolic
Problems with Source Terms , to appear in J. Sci. Comput.

For some problems (e.g. ocean-at-rest) can simply use
arithmetic average.

1

V10 = §(¢(Qi—1) + P(Qi))
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http://www.amath.washington.edu/~rjl/pubs/wbfwave10/index.html
http://www.amath.washington.edu/~rjl/pubs/wbfwave10/index.html

1
(hu); + (hu® + §9h2)z = —ghB,(z)

Ocean-at-rest equilibrium:
u® =0, he(z) + B(z) = 7} = sealevel.




Shallow water equations with bathymetry B(x)

(hu)t + (hu2 + %gh?)ac = —ghB,(z)
Ocean-at-rest equilibrium:
u® =0, hé(z) + B(x) = 7 = sealevel.
Using

U _y/0 = —%(hzel + h;)

gives exactly well-balanced method, but only because hydrostatic pressure is
quadratic function of h:
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Shallow water equations with bathymetry B(x)

ht + (hu)x =

(hu)t + (hu2 + %gh?)ac = —ghB,(z)
Ocean-at-rest equilibrium:
u® =0, hé(z) + B(x) = 7 = sealevel.
Using

- g (hic1 + hy)
gives exactly well-balanced method, but only because hydrostatic pressure is

quadratic function of h:

Ui _1/0 =

F(Qi) — f(Qiz1) — Y, 1/2(3'*31 1) =
( gh? — % i1+ hi)(B; — Bi—1)
= §(hi 1+h><< +B)) = (hies + Bi))
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Adaptive Mesh Refinement (AMR)

e Cluster grid points where needed
¢ Automatically adapt to solution

¢ Refined region moves in time-dependent problem

Basic approaches:

e Cell-by-cell refinement
Quad-tree or Oct-tree data structure
Structured or unstructured grid

e Refinement on “rectangular” patches
Berger-Colella-Oliger style
(AMRCLAW and CHOMBO-CLAW)

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Nested AMR grids

Coarse: 400m cell side, Level 2: 50m, Level 3: 12m, Level 4: 3m
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AMR lIssues

Refinement in time as well as space

Conservation at grid interfaces

Accuracy at interfaces, Spurious reflections?

Refinement strategy, error estimation

Clustering flagged points into rectangular patches
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Time stepping algorithm for AMR

e Take 1 time step of length k£ on coarse grid with spacing h.

¢ Use space-time interpolation to set ghost cell values on
fine grid near interface.

) Take L time steps on fine grid.

= refinement ratio, h=h/L, k=k/L.

) Replace coarse grid value by average of fine grid values on
regions of overlap — better approximation and consistent
representations.

e Conservative fix-up near edges.

by + 2k - » =
Q| @ Q!

to+ k . .
Qs Qn

Qni—s Qi @, Q5
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Flagging Cells for Refinement

Every kcheck time-steps at each level (except finest), check all
grid cells and flag those needing refinement.

Use one or more of the following flagging criteria:

¢ Richardson estimation of truncation error.
Compare result after last two time steps on this grid with
one time step on a coarsened grid.

e Estimate spatial gradient of one or more components of
solution.

e Check for regions where refinement is user-forced to some
level.

e Problem-specific, e.g. near shore for tsunami simulation.
e Other user-supplied criterion setin flag2refine. f.
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Clustering Flagged Cells for Refinement

Use Berger-Rigoutsos algorithm
[IEEE Trans. Sys. Man & Cyber.] 21(1991), p. 1278]

Clusters flagged points into a set of rectangular patches.

Tradeoff between:

e Many small patches cover flagged points with minimal
refinement of unflagged points.
e But.... increases overhead associated with each patch,

e.g. boundary values: ghost cell values set by copying or
interpolation from other grids,

B-G algorithm has cut-off paramter: require that this fraction of
refined cells be flagged (usually set to 0.7).
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Topography should be consistent between different levels.

1
B = (B 4 BYY)

i" ﬁm
< < o T R




Refinement of topography

Topography should be consistent between different levels.

1
B{ = LB 4 B

Important to interpolate surface, not depth, as in...

ot et gt ot ot
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Inundation modeling
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Refinement of topography near shore

Again need to maintain flat surface before wave arrives:

Mass cannot always be conserved!
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Refinement of topography near shore

Again need to maintain flat surface before wave arrives:
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Cannot conserve mass when refining near shore!

3.00 hours
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Cannot conserve mass when refining near shore!

3.75 hours

39.5 Anapolis region at 3.75 hours
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(a) Radial ocean
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Radial ocean verification study

Topography as function of radius
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Radial ocean verification study

Topography of shelf and beach
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Radial ocean verification study

Cross-section through island center
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(a) Radial ocean
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Radial ocean verification study

Comparison of Gauges 1 and 2 from Test 1 and 2:

1.0

-1.0

8000 9000 10000 11000 12000 13000 14000

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Radial ocean verification study

Comparison of Gauges 1 and 2 with more refined grids (Test 1):

1.0

Meters

-195 2.5 3.0
Hours

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



A AQ







Wave propagation algorithm on a quadrilateral grid

This approach works very well, even in highly distorted cells.
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Mapping from rectangle to sphere
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Shallow water on rotating sphere
Calhoun, Helzel, RJL, SIAM Review 2008 [link]
Berger, Calhoun, Helzel, RJL, Phil. Trans. R. Soc. A 2009 [link]
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http://www.amath.washington.edu/~claw/clawpack.org/links/sphere/
http://www.amath.washington.edu/~claw/clawpack.org/links/amrsphere09/

AMR on “rectangular” patches
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Our approach for shells

Above approach can be used on sphere and then extended
radially:

Useful for atmosphere, mantle convection,
volcanic ash plumes, etc.
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Some references

e Clawpack: www.clawpack.org
e GeoClaw: www.clawpack.org/geoclaw
¢ Recent paper with references and codes:

The GeoClaw software for depth-averaged flows with
adaptive refinement,
by M. J. Berger, D. L. George, RJL, and K. M. Mandli,

www.clawpack.org/links/awr10/
or... arXiv:1008.0455v1

e Paper for Acta Numerica in preparation,
to appear.
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http://www.clawpack.org
http://www.clawpack.org/geoclaw
http://www.clawpack.org/links/awr10/
http://arxiv.org/abs/1008.0455

ICIAM 2011

Vancouver, BC, July 18 — 22, 2011

ICIAM 2011
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Also in Vancouver:

Links:
http://www.sfu.ca/WAVES/
http://www.iciam2011l.com/


http://www.sfu.ca/WAVES/
http://www.iciam2011.com/
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