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Mt. Rainier and Tacoma
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Mud and debris flows from Mt. Rainier
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Malpasset Dam Failure

Catastrophic failure in 1959
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Modeling work by David George, using GeoClaw

Coarse: 400m cell side, Level 2: 50m, Level 3: 12m, Level 4: 3m
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Malpasset survey locations
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Malpasset survey locations
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Grid convergence study

Water depth gauge at location P2 computed with two different
resolutions (using 4 levels or only 3):
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Chesapeake Bay and Anapolis

Quick test after yesterday’s discussion...

Data from Design-a-Grid NOAA National Geophysical Data
Center (NGDC)
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Chesapeake Bay and Anapolis

Timeline:

View Google Earth, download bathymetry: ≈ 30 minutes

GeoClaw implementation started: 5:40pm

The run just shown...
Started: 6:16pm
Ended: 6:56pm

Went to dinner...

Making plots of 29 frames and movie:
Started: 7:58pm
Ended: 8:16pm
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Shallow water equations with bathymetry B(x, y)

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)
x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)
y

= −ghBy(x, y)

Some issues:

• Delicate balance between flux divergence and bathymetry:
h varies on order of 4000m, rapid variations in ocean
Waves have magnitude 1m or less.

• Cartesian grid used, with h = 0 in dry cells:
Cells become wet/dry as wave advances on shore
Robust Riemann solvers needed.

• Adaptive mesh refinement crucial
Interaction of AMR with source terms, dry states
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Cross section of Atlantic Ocean & tsunami

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Cross section of Atlantic Ocean & tsunami
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DART buoy data

Deep-ocean Assessment and Reporting of Tsunamis

NOAA’s Network of pressure gauges on the ocean floor
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DART buoy data

Deep-ocean Assessment and Reporting of Tsunamis

NOAA’s Network of pressure gauges on the ocean floor
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www.ndbc.noaa.gov/station_page.php?station=32412

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010

www.ndbc.noaa.gov/station_page.php?station=32412


DART buoy data
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DART buoy data
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NOAA unit sources for subduction zone

From: Tang, L., V.V. Titov, and C.D. Chamberlin (2010): A Tsunami
Forecast Model for Hilo, Hawaii. NOAA OAR Special Report, PMEL
Tsunami Forecast Series: Vol. 1, 94
http://nctr.pmel.noaa.gov/pubs.html
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Response at DART buoy from unit earthquakes

Propagation in deep water is essentially linear...

Fit linear combination of these responses to DART data.
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Best fit from unit earthquakes

Best fit with constraint that all coefficients (dislocations)
positive.
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Response at DART 51406
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CLAWPACK — www.clawpack.org

• Open source, 1d, 2d, 3d
• Originally f77 with Matlab graphics.
• Moving to f95 with Python.
• Adaptive mesh refinement.
• OpenMP and MPI.

User supplies:
• Riemann solver, splitting data into waves and speeds

(Need not be in conservation form)

• Boundary condition routine to extend data to ghost cells
Standard bc1.f routine includes many standard BC’s

• Initial conditions — qinit.f

• Source terms — src1.f
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Options for using Clawpack

1 Install from tar file or Subversion: Instructions.
Requires some prerequisites: Fortran, Python modules.

2 Use the VirtualClaw virtual machine.

3 For some applications, use EagleClaw
(Easy Access Graphical Laboratory for Exploring
Conservation Laws)

Also perhaps useful:
Class notes on Python, Fortran, version control, etc.
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Godunov’s Method for qt + f(q)x = 0

1. Solve Riemann problems at all interfaces, yielding waves
Wp
i−1/2 and speeds spi−1/2, for p = 1, 2, . . . , m.

Riemann problem: Original equation with piecewise constant
data.
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The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0
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Riemann solution for the SW equations

The Roe solver uses the solution to a linear system

qt + Âi−1/2qx = 0, Âi−1/2 = f ′(qave).

All waves are simply discontinuities.

Typically a fine approximation if jumps are approximately
correct.
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Wave-propagation viewpoint

For linear system qt+Aqx = 0, the Riemann solution consists of

wavesWp propagating at constant speed λp.
λ2∆t

W1
i−1/2

W1
i+1/2

W2
i−1/2

W3
i−1/2

Qi −Qi−1 =
m∑
p=1

αpi−1/2r
p ≡

m∑
p=1

Wp
i−1/2.

Qn+1
i = Qni −

∆t
∆x
[
λ2W2

i−1/2 + λ3W3
i−1/2 + λ1W1

i+1/2

]
.
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Upwind wave-propagation algorithm

Qn+1
i = Qni −

∆t
∆x

 m∑
p=1

(spi−1/2)+Wp
i−1/2 +

m∑
p=1

(spi+1/2)−Wp
i+1/2


where

s+ = max(s, 0), s− = min(s, 0).

Note: Requires only waves and speeds.

Applicable also to hyperbolic problems not in conservation form.

For qt + f(q)x = 0, conservative if waves chosen properly,
e.g. using Roe-average of Jacobians.

Great for general software, but only first-order accurate (upwind
method for linear systems).
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Wave-propagation form of high-resolution method

Qn+1
i = Qni −

∆t
∆x

 m∑
p=1

(spi−1/2)+Wp
i−1/2 +

m∑
p=1

(spi+1/2)−Wp
i+1/2


− ∆t

∆x
(F̃i+1/2 − F̃i−1/2)

Correction flux:

F̃i−1/2 =
1
2

Mw∑
p=1

|spi−1/2|
(

1− ∆t
∆x
|spi−1/2|

)
W̃p
i−1/2

where W̃p
i−1/2 is a limited version ofWp

i−1/2 to avoid oscillations.

(Unlimited waves W̃p =Wp =⇒ Lax-Wendroff for a linear
system =⇒ nonphysical oscillations near shocks.)
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Summary of wave propagation algorithms

For qt + f(q)x = 0, the flux difference

A∆Qi−1/2 = f(Qi)− f(Qi−1)

is split into:

left-going fluctuation: A−∆Qi−1/2, updates Qi−1,
right-going fluctuation: A+∆Qi−1/2, updates Qi,
Waves: Qi −Qi−1 =

∑
αprp =

∑Wp

Often take A±∆Qi−1/2 =
∑

(sp)±Wp.

f-wave formulation: Bale, RJL, Mitran, Rossmanith, SISC 2002

f-waves: f(Qi)− f(Qi−1) =
∑
βprp =

∑Zp

Often take A±∆Qi−1/2 =
∑

(sgn(sp))±Zp.

In either case, limiters are applied to waves or f-waves for use
in high-resolution correction terms.
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Incorporating source term in f-waves

qt + f(q)x = ψ(q)σx(x)

Concentrate source at interfaces: Ψi−1/2(σi − σi−1)

Split f(Qi)− f(Qi−1)− (σi − σi−1)Ψi−1/2 =
∑

pZ
p
i−1/2

Use these waves in wave-propagation algorithm.

Steady state maintained:

If f(Qi)−f(Qi−1)
∆x = Ψi−1/2

(σi−σi−1)
∆x then Zp ≡ 0

Near steady state:

Deviation from steady state is split into waves and limited.
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Incorporating source term in f-waves

qt + f(q)x = ψ(q)σx(x) =⇒ Ψi−1/2(σi − σi−1)

Question: How to average ψ(q) between cells to get Ψi−1/2?

A Well-Balanced Path-Integral f-wave Method for Hyperbolic
Problems with Source Terms , to appear in J. Sci. Comput.

For some problems (e.g. ocean-at-rest) can simply use
arithmetic average.

Ψi−1/2 =
1
2

(ψ(Qi−1) + ψ(Qi)).
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Shallow water equations with bathymetry B(x)

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

Ocean-at-rest equilibrium:

ue ≡ 0, he(x) +B(x) ≡ η̄ = sea level.

Using
Ψi−1/2 = −g

2
(hi−1 + hi)

gives exactly well-balanced method, but only because hydrostatic pressure is
quadratic function of h:

f(Qi)− f(Qi−1)−Ψi−1/2(Bi −Bi−1) =

=
(

1
2
gh2

i −
1
2
gh2

i−1

)
+
g

2
(hi−1 + hi)(Bi −Bi−1)

=
g

2
(hi−1 + hi)((hi +Bi)− (hi−1 +Bi−1))

= 0 if hi +Bi = hi−1 +Bi−1 = η̄.
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Adaptive Mesh Refinement (AMR)

• Cluster grid points where needed

• Automatically adapt to solution

• Refined region moves in time-dependent problem

Basic approaches:

• Cell-by-cell refinement
Quad-tree or Oct-tree data structure
Structured or unstructured grid

• Refinement on “rectangular” patches
Berger-Colella-Oliger style
(AMRCLAW and CHOMBO-CLAW)
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Nested AMR grids

Coarse: 400m cell side, Level 2: 50m, Level 3: 12m, Level 4: 3m
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AMR Issues

• Refinement in time as well as space

• Conservation at grid interfaces

• Accuracy at interfaces, Spurious reflections?

• Refinement strategy, error estimation

• Clustering flagged points into rectangular patches

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Time stepping algorithm for AMR

• Take 1 time step of length k on coarse grid with spacing h.
• Use space-time interpolation to set ghost cell values on

fine grid near interface.
• Take L time steps on fine grid.
L = refinement ratio, ĥ = h/L, k̂ = k/L.

• Replace coarse grid value by average of fine grid values on
regions of overlap — better approximation and consistent
representations.

• Conservative fix-up near edges.

Q0
j

Q1
j

ĥ

Q̂0
m

Q̂1
m

Q̂2
m

Q̂0
m−1

Q̂1
m−1

Q̂2
m−1

Q̂0
m−2

tn

tn + k̂

tn + 2k̂
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Flagging Cells for Refinement

Every kcheck time-steps at each level (except finest), check all
grid cells and flag those needing refinement.

Use one or more of the following flagging criteria:

• Richardson estimation of truncation error.
Compare result after last two time steps on this grid with
one time step on a coarsened grid.

• Estimate spatial gradient of one or more components of
solution.

• Check for regions where refinement is user-forced to some
level.

• Problem-specific, e.g. near shore for tsunami simulation.
• Other user-supplied criterion set in flag2refine.f.
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Clustering Flagged Cells for Refinement

Use Berger-Rigoutsos algorithm
[IEEE Trans. Sys. Man & Cyber.] 21(1991), p. 1278]

Clusters flagged points into a set of rectangular patches.

Tradeoff between:

• Many small patches cover flagged points with minimal
refinement of unflagged points.

• But.... increases overhead associated with each patch,
e.g. boundary values: ghost cell values set by copying or
interpolation from other grids,

B-G algorithm has cut-off paramter: require that this fraction of
refined cells be flagged (usually set to 0.7).
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Refinement of topography

Topography should be consistent between different levels.

B`
1 =

1
2

(B`+1
1 +B`+1

2 )

Important to interpolate surface, not depth, as in...
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Inundation modeling
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Refinement of topography near shore

Again need to maintain flat surface before wave arrives:

Mass cannot always be conserved!
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Chesapeake Bay and Anapolis

Cannot conserve mass when refining near shore!
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Radial ocean verification study
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Radial ocean verification study
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Radial ocean verification study

Comparison of Gauges 1 and 2 from Test 1 and 2:
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Radial ocean verification study

Comparison of Gauges 1 and 2 with more refined grids (Test 1):
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Wave propagation algorithm on a quadrilateral grid
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Wave propagation algorithm on a quadrilateral grid

This approach works very well, even in highly distorted cells.

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010



Mapping from rectangle to sphere
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Shallow water on rotating sphere
Calhoun, Helzel, RJL, SIAM Review 2008 [link]
Berger, Calhoun, Helzel, RJL, Phil. Trans. R. Soc. A 2009 [link]

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010

http://www.amath.washington.edu/~claw/clawpack.org/links/sphere/
http://www.amath.washington.edu/~claw/clawpack.org/links/amrsphere09/


AMR on “rectangular” patches
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Our approach for shells

Above approach can be used on sphere and then extended
radially:

Useful for atmosphere, mantle convection,
volcanic ash plumes, etc.
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Some references

• Clawpack: www.clawpack.org

• GeoClaw: www.clawpack.org/geoclaw

• Recent paper with references and codes:

The GeoClaw software for depth-averaged flows with
adaptive refinement,
by M. J. Berger, D. L. George, RJL, and K. M. Mandli,

www.clawpack.org/links/awr10/
or... arXiv:1008.0455v1

• Paper for Acta Numerica in preparation,
to appear.

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010

http://www.clawpack.org
http://www.clawpack.org/geoclaw
http://www.clawpack.org/links/awr10/
http://arxiv.org/abs/1008.0455
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Also in Vancouver:

Links:
http://www.sfu.ca/WAVES/
http://www.iciam2011.com/

R. J. LeVeque Coastal Flows Workshop, CSCAMM, Oct. 22, 2010

http://www.sfu.ca/WAVES/
http://www.iciam2011.com/
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