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Overview

P

Multiphase Flow Basics

— General Features and Challenges

— Characteristics and definitions

Conservation Equations and Modeling Approaches
— Fully Resolved

— Eulerian-Lagrangian

— Eulerian-Eulerian

» Averaging & closure

— When to use what approach?
Preferential concentration

Examples
» Modified instability of a Shear Layer
 Sediment suspension in a turbulent channel flow
« Numerical simulation example: Mesh-free methods in multiphase flow
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i What is a multiphase flow? ' | iﬁ\

In the broadest sense, it is a flow in which two or more
phases of matter are dynamically interacting
— Distinguish multiphase and/or multicomponent

 Liquid/Gas or Gas/Liquid

« Gas/Solid

 Liquid/Liquid

— Technically, two immiscible liquids are “multi-fluid”, but are often referred to as
a “multiphase” flow due to their similarity in behavior

|
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Water Air
Pure nitrogen H,0+oil emulsions
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Steam bubble in H,0 Coal particles in air
Ice slurry Sand particle in H,0
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Flows are also generally categorized by distribution of the

— “dispersed”

» One of the fluids is dispersed as non-
contiguous isolated regions within the
other (continuous) phase.

The former is the “dispersed” phase,
while the latter is the “carrier” phase.

One can now describe/classify the
geometry of the dispersion:

» Size & geometry
« \olume fraction

Dispersed/Interfacial
components
— “separated” or “interfacial”
« Dboth fluids are more or less contiguous
throughout the domain
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Gas-Liquid Flow

Bubbly Pipe Flow — heat exchangers in power plants, A/C units

Figure 1.6: Upward Cocurrent Flow in a Vertical Pipe Air-water Flow Patterns
(Roumy, 1969) (1) Independent bubbles, (2) Packed bubbles, (3) Slug
flow, (&) Churn flow, (5) Annular flow. Pipe diameter : 32 mm
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Gas-Liquid Flow (cont)

Aeration:

-produced by wave action

- used as reactor in chemical processing
- enhanced gas-liquid mass transfer
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Gas-Liquid Flow (cont)

Ship wakes — detectability
Cavitation = noise, erosion of structures
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Liquid-Gas Flow

Weather — cloud formation
Biomedical —inhalant drug delivery

Vukasinovic, Glezer, Smith (2000)
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Gas-Liquid Flow

Energy production — liquid fuel combustion
Biomedical —inhalant drug delivery
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Gas-Solid Flow
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a
101 kPa

Gas-Solid (dense) -
' Granular Flow — collision dominated dynamics; chemical processing

http://www.its.caltech.edu/~granflow/homepage.htmi

http://jfi.uchicago.edu/~jaeger/group/
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Liquid-Liquid ‘ ~ A\

Chemical production — mixing and reaction of immiscible liquids

Water-Based
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http://www.physics.emory.edu/students/kdesmond/2DEmulsion.html
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Solid-Liquid

Sediment Transport — i S
pollution, erosion of beaches, SN A

drainage and flood control
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Solid-Liquid

Settling/sedimentation,
turbidity currents

http://lwww.physics.utoronto.ca/~nonlin/turbidity/turbidity.html

G, 1 Visualization of Musd vortieny (rod) and solid particles twhite) of an initinlly spherical suspension fulling due 1o gravity, € o ;o Cae B
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Solid-Gas

Material processing — generation of particles & composite materials
Energy production — coal combustion
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Solid-Gas

Aerosol formation — generation of particles & environmental safety

FIGURE 1.1 (&) Coal-burning power plant. (b) Scanning electron microscope (SEM) FIGURE 1.2 (a) Granite cutting. (5) SEM photograph of quartz particles. Magnification

photograph of coal fly ash particles, 2650
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! Classification by regime

Features/challenges
— Dissimilar materials (density, viscosity, etc)
— Mobile and possibly stochastic interface boundary
— Typically turbulent conditions for bulk motion
Coupling
« One-way coupling: Sufficiently dilute such that
fluid feels no effect from presence of particles.

Particles move in dynamic response to fluid
motion.

« Two-way coupling: Enough particles are present
such that momentum exchange between dispersed
and carrier phase interfaces alters dynamics of the
carrier phase.

« Four-way coupling: Flow is dense enough that
dispersed phase collisions are significant
momentum exchange mechanism

» Depends on particle size, relative velocity, volume
fraction
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Viscous response time ‘ P‘“

 To first order, viscous drag is usually the dominant force on the
dispersed phase

dv r {O fort <0

P — — u=
g =3O, ) Uforr=0 | UV

dv, 18

1
a’; ppgz (U—vp): z_—p(U—vp)

v, :U[l—exp(—t/z'p)] >

— This defines the typical particle “viscous response time”
T = ppD2
P 18u
 Can be altered for finite Re drag effects, added mass, etc. as appropriate
« Stokes number:

— ratio of particle response time to fluid time scale:  St=-%
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Modeling approach? ‘ P‘“

« How to treat such a wide range of behavior?
— A single approach has not proved viable

 Fully Resolved : complete physics

 Eulerian-Lagrangian : idealized isolated particle

uoy3 BulspoN

 Eulerian-Eulerian : two co-existing fluids

Computational Effort
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Fully Resolved Approach

 Solve conservation laws in coupled domains

1. separate fluids
 Each contiguous domain uses appropriate transport coefficients
« Apply boundary jump conditions at interface
« Boundary is moving and may be deformable

2. single fluid with discontinuous properties
« Boundary becomes a source term

« Examples

— Stokes flow of single liquid drop
« Simple analytical solution

e \—
v

— Small numbers of bubbles/drop | o/
i QUiescent Or Weakly thbUIGﬂt fIOW G Tryggvason, S Thomas, J Lu, B Aboulhasanzadeh (2010)

:

THE A. JAMES CLARK SCHOOL of ENGINEERING



Eulerian-Lagrangian

P

 Dispersed phase tracked via individual particles

— Averaging must be performed to give field properties
 (concentration, average and r.m.s. velocity, etc.)

« Carrier phase is represented as an Eulerian single fluid
— Two-way coupling must be implemented as distributed source term

- 4 vorticity
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Particle Motion: tracer particle ‘ *“

* Equation of motion for spherical particle at small Re,;:

r V I V
dvp r 1 | Du dv p—‘ Du Py |I
m, =3muD(u—v, )+ — ft — J+mf——mp ——£ g
dt 2 Dt dt Dt P,
: : Pressure
Inert \% d Added
nertia iscous drag ed mass gradient buoyancy
— Where
; : : :
m,=p, 2, the particle mass ? = fluid velocity
6 v, = particle velocity

3
m,=p, 2, fluid mass of same volume as particle p, = fluid density
' 6

D= particle diameter p, = particle material densit

= flud viscosity

— Possible alterations:
- Finite Re, drag corrections
* Influence of local velocity gradients (Faxen Corrections)

« Lift force (near solid boundary, finite Re )
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Two-Fluid Equations ‘ { ’

 Apply averaging operator to mass and momentum equations

— Drew (1983), Simonin (1991)
» Phase indicator function

: =i =
=t > el W m X : c’ﬁ_“:'!‘ *

« Averaging operator

— Assume no inter-phase mass flux, incompressible carrier phase

* Mass
o o
& (@0 )+ ox, (@pU,;)=0 e S = e
« Momentum B r' aioswmaaff w

'@ K== - = X > =
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Two-Fluid Equations (cont) ‘ { ’

* Interphase momentum transport

— For large particle/fluid density ratios, quasi-steady viscous drag is by far
the dominant term
— For small density ratios, additional force terms can be relevant
» Added mass
» Pressure term
 Bassett history term
— For sediment, p,/p, ~ 2.5 > 1 (k=1 for fluid, kK =2 for dispersed phase)
 Drag still first order effect, but other terms will likely also contribute

5fﬁ%%x§i

. 24[i+015Re; "] R@_/’%’\ﬂd
Ny - >
o Re AH

p
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Closure requirements

»

e Closure

— Closure is needed for:
« Particle fluctuations
 Particle/fluid cross-correlations
* Fluid fluctuations

— Historically, the earliest models used a gradient transport model
» Shown to be inconsistent for many applications

— Alternative: Provide separate evolution equation for each set of terms
Particle kinetic stress equation
Particle/fluid covariance equation

Fluid Kinetic stress equation
— Also required for single-phase RANS models

Also will require third-moment correlations models to complete the closure
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Simpler Two-Fluid Models ‘ »“

« For St <1, the particles tend to follow the fluid motion with
greater fidelity
— Asymptotic expansions on the equation of motion lead to a closed

expression for the particle field velocity, in terms of the local fluid velocity
and spatial derivatives (Ferry & Balachandran, 2001)

i, D , _
—Si(1 —3)3‘: for |w| < St
Du
Dt

w — St [(l - B)% +w- Vu] for |w| ~ O(1).

v=u+4+ {w-—St(1 - pB) for |w| ~ O(St)

— Where g 7, 3
t_r_f W=r,8 T 2p+1

— This is referred to as the “Eulerian Equilibrium” regime (Balachandar 2009).
* Also, similar to “dusty gas” formulation by Marble (1970)
 For larger St, the dispersed phase velocity at a point can be
multivalued!
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« When is a given approach best?

— What approach is best, depends on:
» D/ n: Particle size and fluid length scales (typically Kolmogorov)
" 7,/ 7 Particle response time and fluid time scales
 Total number of particles: Scale of system
" a, @=pyo Loading of the dispersed phase (volume or mass fraction)

a DNS
104 T T TTTTI T T TTTI] T T TTTTIT T T TTT T T 1 pp/pleooo
- Finite size for DNS /Op/pf =25
. 4 Polpr=2.5
102 | =0
agrangian
10! point-particle
IR AR . [ﬁ] S S G S A X
7, 36 ¢(Re) n 10 4
r Equilibrium
19 Eulerian
10—3 —_— - - '~~7r_____~~__~-4___~_~__~~A_~j'~__.
Dus
10# ) gasty
10°° 1 vl oy vl Ll 1 |||
1072 101 100 10! 102
d/n
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Preferential Concentration

 From early studies, it was observed that inertial particles can be
segregated in turbulent flows

— Heavy particles are ejected from regions of strong vorticity
— Light particles are attracted to vortex cores

008 _- | i ’;Y\
o ' - 4 x
« Small St approx. shows trend ™ | | 7/
. . . e @/ ’ 1 1 £ N .
Taking divergence of velocity... f"mﬁ% | Y \ _f
45 P s gﬁ'wﬁm UL_M*_P?LJ; _’:ltt‘.&s "'-“"’““;o

pamciesbox pariclesbox

Vu, =S —,8)[5,-,- - Hgﬂ

Wood, Hwang & Eaton (2005)
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PDF formulation

« Consequences of inertia O T T T T ¢ A
— Implies history of particle matters AN AR RS AN
— Particles can have non-unique velocity s \T \ \N\ \\\\ :
N N/ \%
S

 How can models account for this?

* Probability distribution function
— f(x,u,t) = phase space pdf b RN v o e e

. W é\Q\/ SN A T
q o R, N 4 o7
TV @)Y, @) RN o
r—\\lk % 2L 2
dx
w==r  Ve0=44% v, -0=qa,
_du Du dv D% P |r S
a, = ” mijwDu % )+2 {E—E}—mfa—mp{ _,O_JgJ
— Instantaneous point quantities come as moments of
the pdf over velocity phase space u, >

n(x,t)= jp f(xp,up,t)vlup i, (x,1)= T upf(xp,up,tyup
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Examples ‘ 0‘

g# ° Effect of particles on shear layer instability

« Particle-Fluid Coupling in sediment transport

-« Case studies in interface tracking methods
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Effect of particles on KH Instabilty

£

« How does the presence of a dynamics dispersed phase influence

the instability growth of a mixing layer?

<— U —f

>
X
dix. v 1)=diyiexplilkx—wl)],
ay(x.v.)=ay(y)expli(kx—wr)],
' kAUe
‘ w,(x.v 1) =uy(v)expli(ky—wt)],
rluf
f oy [ § . . ) . \
===, vy(x.y. N =vy(y)explilkx—wr)],
')"}
< : 2 [ d*p ) d*U ; 'dll‘,, ; ‘
d”f, . (,”_/, ”p A Tf (i ) (kllr_f(-‘,'l‘ (1_\‘: k= ' -k d—"*_“ d)+lC_,< oo _lklv'_{,)
- — — — — — — (' —_ X \ f
at 7y ax ox; 27 Y&plity,—Up, .
; P .d-d) "
; y =(u{ > — &"d)),
day, d \ dy~ ]
—+—(au, )=0,
ar  ox; / dd dUu
1ICy——+H(kU—iCylup—i——vy=wl,, v,
) / P dy 4 d,\'(p “p kAu —iA( 2
c llp' " ( ”P. X Ty P d\
7 =——(us—1u . el —i y St ——
at Py ax; 2 Tp( 7 p')’ kCpdp+(RU—-iCplvpy=wv,, ap w—kU

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND



Results

I 0.030

y EffeCt Of partICIeS 0.025 |- /_/""'"“\\\\ (L,,i(())?l 0.04, 0.7
— At small St, particles follow flow T s O
exactly, and there is no dynamic foost 277 N0 N\ !
response. Flow is simply a heavier oosor 4 " e
. 0.005 - \ N N A

fluid. o X N\

0.00 0.10 0.20 0.30 0.40 0.50
/2 - R B B B

— As St is increased, dynamic slip
becomes prevalent, and helps damp .4,

the instability
0.08
— At large St, particles have no 0.06
response to perturbation and are
static § 0.04
] ) ] 0.02
— Effect is stronger, for higher loadings,
but shear layer remains weakly 0.00}
unstable
=0.02
-0.04 T B S T ETT] R AT IT] PR AW R TY] B Y
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Mechanism

« Particles damp instability

— Particles act as a mechanism to .
redistribute vorticity from the core '
back to the braid, in opposition to
the K-H instability

V-up
i dv, |
Cf zkuerE dU L | —
Qly=0=- (0—kU)(0—kU+i(C;+C,)) dv _
e Limitations | :

— Results at large St do not capture
effects of multi-value velocity

e) IF

A=005

13
f e 2
S S — -3
o 0 = 3 < )
- .,:'__ f) 3
s $ ¥
>

0ns (K1) 1

Meiburg et al. (2000)
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Concentration Mean Velocity

Planar Horizontal Water Channel
— 4 x 36 x 488 cm, recirculating flow
— Pressure gradient measurements show fully-developed by x =250 cm
— Particles introduce to settling chamber outlet across span
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Experimental Conditions ‘ *‘

 Both single-phase and two-phase experiments conducted

e Carrier Fluid Conditions

— Water, Q =7.61/s

- U.=59cm/s, u.= 2.8 cm/s, Re, =570

— Flowrate kept the same for two-phase experiments

— Tracer particles: 10 um silver-coated, hollow glass spheres, SG = 1.4

 Dispersed Phase Conditions
— Glass beads: (specific gravity, SG = 2.5)
— Standard sieve size range: 180 < D < 212 um
— Settling velocity, v, =2.2 to 2.6 cm/s
— Corrected Particle Response Time, 7 = 4.5 ms
- Stt=1,/t"~ 4 p
— Bulk Mass Loading: dM/dt = 4 gm/s, M,/M; ~5 x 10
— Bulk Volume Fraction, oo = 2 x 10
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Mean Concentration Profile

»

| P Measured ~
__ Sy, =yl )=

y — Concentration follows a power law

» Equivalent to Rouse distribution for 10
infinite depth

Cross—stream position, y/h
o

« Based on mixing length theory, but still
gives good agreement

10

10 10’ 10° 10
Concentration, C/Co

—
o
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Mean Velocity

1 T » 25
0.0} = Fluid (Single Phase)
3 Fluid (Two-Phase) =¥
0.8} e Particles %0
< =
> =
= 0.7 =
S =
a 0.6t _8 15t
Q Y]
E 0.5 >
9 2
= 0. = 10y
-
[ (1]
20.3 £
O ()
c R
0.2y S S - [luid (Single Phase)
0.1 = - Fluid (Two-Phase)
: e Particles
0 : z 2 e o
0 20 40 60 10 10°
Mean Streamwise Velocity, U, L‘;') (cm/s)

Cross-stream position, y*

— Particles alter mean fluid profile
» Skin friction increased by 7%; qualitatively similar to effect of fixed roughness
— Particles lag fluid over most of flow

» Observed in gas/solid flow (much large Stokes number... likely not same reasons)
« Particles on average reside in slower moving fluid regions?

— Reported by Kaftori et al, 1995 for p /o= 1.05 (current is heavier ~ 2.5)

— Organization of particles to low speed side of structures —a la Wang & Maxey (1993)?

— Particles begin to lead fluid near inner region — transport lag across strong gradient
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« Mean slip (®) is negligible

Streamwise Slip Velocity, {cm/s)
Streamwise direction
 Particle-conditioned slip (#) is generally small in outer flow
« Mean slip () and particle conditioned slip are similar in near wall region

Wall-normal direction

3

Cross—stream position, y/h

Particle Slip Velocity, 44— _ (u
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Wall-normal Slip Velocity, (cm/s)

« Particle-conditioned slip (%) approximately 40% of steady-state settling velocity (2.4 cm/s)
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Particle Conditioned Fluid Velocity

1 . .
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Streamwise velocity, U {cm/sec) Cross-—stream velocity, V {cm/sec)

— Average fluid motion at particle locations:
« Upward moving particles are in fluid regions moving slower than mean fluid
« Downward moving particles are in fluid regions which on average are the same as the fluid
« Indicates preferential structure interaction of particle suspension
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Suspension Quadrant Analysis

— Conditionally sampled fluid velocity fluctuations
« Upward moving particles primarily in quadrant 1
« Downward moving particles are almost equally split in quadrant 11 and 1V

Unconditional Fluid Velocity, y =40 Conditional, v > 0 Conditional, v <0
10 . 10 10
o 5 S 5 iy
3 . 3 3
o = @ @
£ o0 _ E 0 £
> -5 ¥ -5 A
~10 ~10 10
10 0 10 ~10 0 10 10 0 10
u’, (cm/sec) u’, (cm/sec) u’, (cm/sec)

— Persistent behavior
« Similar quadrant behavior in far outer region
« Distribution tends towards axisymmetric case in outer region

Unconditional Fluid Velocity, = 340 Gonditignal, W, =0 Conditional, ¥, =0
10 - - 10 10
3 3 3
E £ £
L] S s
> > -5 £
-10 -10 10
-0 0 10 -0 0 10 -0 0 10

| u’, (cm/sec) u’, (cm/sec) u’, (cm/sec)
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Expected Structure: Hairpin “packets”

Visualization of PIV data in single-phase boundary layer
— Adrian, Meinhart & Tomkins (2000), JFM

— Use “swirl strength” to find head of hairpin structures

» Eigenvalues of 2-D deformation rate tensor, swirl strength is indicated by magnitude of complex
component

Hairpin
packets

- -

. m.— . X .
X o BN g -
- - — a2 et
o > R Cap s e z [I2%d
0.5 5 - A e Toras A g S dra i et e

———

7] e
S —— ey m
Swirl ;
strength
contours

— Spacing ~ 200 wall units
— Packet growth angle can increase or decrease, +10° on average
— Packets were observed in 80% of images (Re, = 7705)
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Streamwise position, x*

 Similar structures found
— Appropriate spacing
— Not as frequent

» Re effects? (Re, = 1183)
« Smaller field of view?

. * Evidence suggests packets contribute to particle suspension
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Particle Kinetic Stress ‘ "“

 Turbulence budget for particle stresses
« (Wang, Squires, Simonin,1998)

0
0 4 —— Wuw )Y =P, +D, +I1¢ +II”
T~ 2,m ax uZ,iu2,j 2 2,0 2,ij 2,ij 2,ij

m

. PZij:_<u;iu;m
— Production by mean shear ~ nT

. D B :_ii[av/ <u-' ~u’ .uf > ]
— Transport by fluctuations >V o g L2\720272n/

d,,:— &é&v u’ .u’ .
— Momentum coupling to fluid ** ,2d ! T
— (destruction)
JZ— IOI 3Cd rof ' ’
: - e Gt A A | 7072 o VMR V)
— Momentum coupling to fdeUZ’f <p2 4 d [1 2. T Wt ]>2

— (production)
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Particle Kinetic Stress Budget

% ° Streamwise Particle/Fluid Coupling: IT9, ,,, TP, ,,

— Compare results to Wang, Squires, & Simonin (1998)
« Gas/solid flow (p,/p;=2118), Re, = 180, No gravity, St*~700
- Computations, all 4 terms are computed; Experiments, all but D, ;computed

Experiment, solid/liquid 0.2 Wang, et al, solid/gas

e, PD

- :) . . - - - )
0 100 200 300 400 500 600

() D37 (e ) [T9 ;) {15 | e} P55 (0} SUM

— Interphase terms are qualitatively similar
Similar general shapes, TT°;; > TT°;;
— Quantitative difference

- Magnitudes different: TT°;, / TT°;;~1.3 vs 3, overall magnitudes are 10 to 20 times greater
— Interphase terms are expected to increase with decreased St*
« Dominant interphase transfer (IT) greatly diminishes importance of mean shear (P)

» Turbulent transport (D) has opposite sign because of small shear production (P)
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