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Assume that our goal is to compute mean flow statistics such as

U, and K:%u_f where (U, =U., +u,

One can either:

Pursue DNS (i.e. the "honest" approach) of averaging solutions of the

NS eqn:
ou;, . OU\ P  _,
’O(Bt * ja:sj)_ o, THV Vs

or pursue RANS (i.e. the "dishonest" approach) of solving the averaged
NS eqn:

aUv; . 9U; aP o O oT;)
P ( ) B.‘lfg + #V Ut 33:3;

T _ .
where T3 = —pU;U; = —PRU the Reynolds stress tensor, is modeled.



DNS: Highly accurate but of limited practical usefulness.

RANS: Inaccurate, unreliable, requires empirical modeling, but of
widespread use.

LES, a third approach has conceptual problems - though these are
usually ignored. In particular, the average of the filtered velocity:

(U, 0) = [ G (x = y)Uly, t)dy

does not necessarily equal the mean velocity, i.e.

U.=<U, >

Moreover, if U, =U; +U; where U; =<U, >—<U, >

Is the resolved part of the velocity fluctuation, then

1 1 Conundrum: if the subgrid
K= —(ul)? 4+ wlu? + - (ud)? energy is large, then K cannot
2 2 be found. If the subgrid energy

Is small, then LES is a DNS.



Our interest hereis in the RANS approach.

There are 2 basic options:

Direct models for R,-j =Uu;u;

R, =777

or model the R,./. equation:
3R13 _ 3{_]-.,; N Bﬁmk
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Biir = Ui iy + EPT@ &k + BPTLJ O
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Direct models are most popular and we consider just this case.

+IL; + vV*R;;

IL;



The Reynolds stress R;; has a physical interpretation as the flux of the

ith component of momenum in the jth direction caused by the fluctuating
velocity field.

For non-dense gases the stress tensor in the Navier-Stokes equation
has a similar interpretation as representing the flux of the ith component
of momentum in the jth direction due to molecular motion.

In the molecular case:
C =<C, >+c; <C;>=U,

and the stress tensor is:

O = —p < CiCj >

—p < ¢icj >= —pd;; + 3U°i—ké’Uj
P Ci ¥ B p LX) M 8&.-"3 3931;



Can a similar model for the Reynolds stress tensor be justified?




There are very strong reasons for wanting such a model to be true.
In this case the mean momentum equation becomes:

Ui 7,90 L _ 0[P 25l O gy (8% 4 O
ot = lox;  Ox|p 3 dz; Y\ox; | O

This approach is:

eeasy to install within a NS solver
relatively well behaved
relatively inexpensive to solve



Consider the validity of the molecular transport analogy in the
context of a turbulent transport in a unidirectional mean flow
such as in a channel or boundary layer:

Uy

intermediate
layer

du

—F y)>0
dy viscouslayerl e~
In this case:
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U(y)
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Molecules transport momentum, unchanged, over the mean
free path, A, before colliding with other molecules and
exchanging momentum. U(y) is linear over A.

1
p<erey > pc(Ulyo — ad) = Ulyo + @)
< €16 >R — d—U
P 162 = ‘udy
b= la,\pc} here: € = \/C,-Z

2



To analyze the physical mechanisms behind turbulent transport
consider the set of fluid elements that arrive at a given point a at time t.

ui y)
-t t
b
a local linear
b approximation
b
b /

Unlike the molecular case:

‘momentum is not preserved on paths until mixing.
*the idea of "mixing" is undefined
*no obvious separation of scales



Use backward particle paths to evaluate an exact Lagrangian decomposition
of the Reynolds shear stress that exposes the underlying physics.

ww = wv + v —T) +v(U — UY)

N

goes to 0 as T increases
(establishes a mixing time).

Thus
— =b 7=
v=vU -U)+o(U-U"
transport caused by fluid transport associated
particles carrying, unchanged, with changes in
the mean momentum at point velocity (accelerations)

b to point a. along particle paths.



v&‘/b—L_/_

The correlation is created by fluid particle movements within a
spatially varying mean field: when v >0 the difference in
mean velocity along the path is negative and vice versa.
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Acceleration transport originates
particles as they move toward the wall
(sweeps) or retarding fluid particles as
they eject from near the wall.

largely in the effect of vortical
structures in accelerating fluid
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Close to the surface, viscous effects

retard fast moving fluid
particles leading to a decrease in

Reynolds stress.
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Decomposition of acceleration transport
Into viscous and pressure effects.

t t
v(U —U?) = ./f: U@(s)ds + vV2U(s)ds
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Evaluation of the Lagrangian decomposition in channel flow yields:
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The Lagrangian analysis can yield a quantitative estimate of
the potential errors in a gradient model of the Reynolds stress.

——_ dU L5 d*U
U'=U—Loy + 5 gt
" (Mixing length -
L=x—-b= U(X(S) s)ds - distance traveled
t—T ’ during the mixing

time)

5 __dU vI2dU
‘U(U —U) = —‘ULQ d'y + 2 dy2 + ...

N

effect of non-linearity of the
v mean velocity over the mixing
gradient term length




An exact decomposition of the turbulent shear stress:

W:—rzzﬁ%m,ﬁv( U-u’)

/

Correct gradient Non-linearity Acceleration
contribution of mean velocity effects

- t R
where VL, = Iv( ) v( s)ds=T,,v*
t-r \

Lagrangian integral time scale



Errors in the gradient model:

- \ .
~, e T
—0.4 /{HH R‘-a_h o\
—05 - 1 _ B

Clearly , significant errors are present.

RANS models attempt to compensate for errors by a judicious choice of
the eddy viscosity.



Dissatisfaction with linear transport models has fueled interest in
models that are non-linear in:

1(oU; oU; ) (rate of strain 1(oU; oU,) (rotation
Vo2 tensor) 77 2 B

ox; X, ox,  ox, | tensor)

A typical example of a non-linear model (e.g. Algebraic
RS Models):

2 K% _ K3 _ 1— _
R‘j p— gK&U - 20” Sij + A]_E_E(Sgksjk - gSkISklﬁsj)

K3 - 1
+A25—2 (WaWi — gwmwkﬁij)

€

KS _ K3 (88, - 85,
+ Ay (SaWi + SapWa) + A 3 ( 3;3 + UkaT:f)

Sometimes non-linear models are derived by simplification of RSE models.



Assuming some legitimacy for linear RS models - what is v, ?

For molecular transport:

UZEZLCMCOCUL
p 2

suggesting that the eddy viscosity depends on the product of
velocity (U) and length (L) scales. RANS models vary depending on
the choice for U and L.

The K - g closure assumes

U <K [ K3/2/g (eddy turnover time)

Thus: L, :C” Kz/f:



K equation modeling

0K — 0K U 1 Opu; o Ou;(u?/2)
el T = - i — — — K- 3\
ot +Us 0z Oz ; Hij =€ p Oz, v Oz
Production / \ /
From & equation 5 {v, GK}
OX,; | Oy OX;

oy IS a turbulent
Prandtl number



€ equation

% =P+ P+ P +P+1I.+T.+ D.— T,
Ou; Ou,; OU;
Pl = -9 J J L
€ Y dx; Oxy Oz
PE = € ggﬁ} -«
St Production
PP = —2vu O, &V,
¢ “or; dxpox;’
Ou; Quy Juy,
4 _ S 1
PE B 2v 3:1?;; a’l?j 3:1?j !
M o= —2v -2 (apa“*)
Oz; 0z; ij 7 Transport/Diffusion
_ 3, A, Ou;
Te = —v Oy, (ukﬁmj 3:1@)
D. = vV

T y2( 244, )2 - Dissipation
¢ 311?}:3.’3;3



Modeling of the € equation is done in stages
by considering its properties in simplified settings:

1. isotropic decay.
2. homogeneous shear flow.

3. constant stress layer near solid walls.



dK
= —¢€

The exact equations governing the decay of Isotropic Turbulence:

dt
de Bu; Ou; Ou 8%u; \°
=Pl T, =2y T gy -
dt dx; Oz ; Ox; ;0
vortex stretching dissipation
au ) 822
SKE_(&"#)S G=(F)2 R _K2
After defining: 22 2 ™=
J (2) (2) Ve
(skewness) (palenstrophy) Reynolds number
dK
— = —c
dt
These may be simplified to:
de 1 ¢2 €?
— =SR2 __ — (}*—
g~ Ky K



In the case of self-similarity, e.g.: ft n)=uOu r’:f t/A l:

Sk and G are constant and the system of equations is closed and solvable.
dK
_— = _E
dt

de . 1€ , €
o~ K Cg

Two equilibria exist:

2
Low R;: vortex stretching negligible: % :-Zg_ K ~t°%?
dt 5 K
High R;: vortex stretching and dissipation 9¢ _ _5,¢& K~
equilibrate dt K

In traditional modeling vortex stretching is eliminated creating
an opportunity to match decay rate with experiments:

ac K p e

2
o _ o €
at 2K



Homogeneous shear flow _“Y

dy
dK
=P
di ¢
P P 4P
dt € € € €

Pl+ P = 20w S

L 2
Assume: P :_uvﬂ =C, K_32

dy £

wiwy UV
( 2K
P'+P:*=(C,C,KS*

IS constant everywhere

exact equations

V2
Il

— > enstrophy



Modeled Equations for Homogeneous Shear Flow

dK _ , K
— = — — €
dt oy
2 2
de 5 L€ €
. — 2 _~_ —
— = CaCuKS* + Co R — Coy
.o O _ Without vortex
o5l ss| '« — | stretching: blow
3.0 ,"' Vs 30 I:I up.
v 2.0 > S v 20} .' ) I
" = E'E?-';# 15 ,'II f'/-
1.0 o f.;:-'-‘:':;';nb” 10} ,'I. //lr
-:jlo \ ! “:L/I
0 2 4 6 8 10 =L . L ]
\ St 0 . 2,:._ 40 G0 Bl Wlth VorteX
5t stretching:
chosen to match prod = diss
& experiments equilibrium



¢ equation modeling

homogeneous shear flow model -
calibrated to give correct K growth

a t) af
E 39:% ¢ 3&:@

N

——P1+P2+P3+P4—|—1'I +T.+D.— T,

) N\

-Cs

Isotropic turbulence model - calibrated
to give a decay rate consistent with data



K—¢ Closure (high Re form)

0U, 7oUs__ 0[P 2. @ [( CK"\ (U, U,
ot jaﬂ.';'j - 3.’175 P 3 a&?j € 8$j 8:15.,;

OK - OK _C,K* (8Us 0U\3U, 0 [( = CK*\ 0K
ot ’6x; € \Oz; Oz ) Ox; O; oxe | Ox;
e — B o0, oU\oU, . & & C,K?\ B
ot T Vigy, = Catult (8:.1’:3 aa;i) o5; K T o, K” ) amJ

C,=0.09 C,=144 C, =192
o, =10 o,=13



Calibration of the K—¢ Closure

In the "constant stress layer"

ww ~ —U?
Assume: __
_du
P = —UP— =~ &€ st
dy
and the model: g
K*dU
W H _O.u.__ 1 50 160
€ dy
Then: 2
K= Ur

/C,

Moreover, it T (y*) = In@*)+B  then: e=-7

Substituting these results into the € equation gives:

\/CT#JE (062 - Ofl) =1

K2

400



Near-wall modeling

Boundary conditions:

K( 0)=0  £~0 —uﬂf( 0)- 2U(af J

Among the problems with the high Re modeling near a boundary:
v, =C, K?le >T,,v7°

Introduce a wall function to force the equivalence:

v, =C,f, K’ e

In effect, f#K Syl



Other problems that have to be fixed near a wall:

Oe
ot

TT. T7. 2 2
ﬁaa_‘cﬂc"f(w aU_,,)am & 9 KV_FCHK)&E‘

dx; = Oz ) Ox; Cage + Oz; Ox;

;

K — 0 at wall so
dissipation blows up

At the wall surface:  II.(0) + D.(0) = T.(0)

yet no explicit model for I, has been assumed in high Re model.



Low Re model for the € equation near walls.

Je
ot

— Oe
Ua——C'Elﬁ — Py - OEsz

X

wall functions

/7

v, =C,f, K’ /e

3 .v Oe

here (e.g.) €=



What to expect from the popular RANS models:

1. The predictions of RANS models in their standard form, can be
both acceptable or unacceptable depending on the desired accuracy,
naivety of the user and other factors.

2.1t is very common to make ad hoc changes to the values of constants
and even to add additional modeling expressions in order to improve
accuracy, or to force the solution to acquire desired physical attributes.
The idea is that some aspect of physics is lacking in the original model
that needs to be compensated for.

3. Changing the properties of models can bring the solutions closer
to one set of data and further from another set of data.

4. Sometimes model alterations - with no basis in physics - are made
as alast resort to force better results: e.g. "clipping”

5. RANS solutions sometimes are regarded as successful if only one
part of the solution is captured - the part that is of interest.



6. Adding additional physics to RANS calculations can be especially
difficult - two layers of inaccuracy: the underlying turbulence and
the new physical model. Different models of the physics (e.g.
particle dispersion, chemistry, combustion) can react differently to
the same underlying RANS modeling.

7. A numerical calculation with a RANS scheme may converge for
one set of input parameters and not converge for a similar case of
the same flow.

8. The quality of one particular RANS model may appear to be
better than it is because if performs better than other models.

9. Very often computational speed is considered more important
than accuracy.

10. In some flows, complaints about steady RANS solutions have
led to the use of URANS (Unsteady RANS) in which features
such as vortex shedding are considered to be part of the mean
(albeit transient) field.



11. Many research studies have compared LES predictions to
RANS predictions. Sometimes RANS is as good as LES,
sometimes LES is better, sometimes the added accuracy of LES
Is not justified by the cost.

12. RANS is increasingly being used to model the wall region of
LES since the local DNS resolution that one would hope for is
often not feasible.



